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1-Hop MPNN and 1-WL Test

Definition (1-Weisfeiler-Lehman Test)

1. Assign a same initial color ¢(?) to all nodes.

2. For [ =0to L do:
> (4D (y) = HASH(c) (v), {c (u)|u € N(v)}).

Facts from the GIN paper (Xu et al.):
> 1-hop MPNNSs are at most as expressive as the 1-WL test.

> There exists some 1-hop MPNN (with injective message passing functions) that
is as expressive as the 1-WL test.

How powerful is the 1-WL test?
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Regular Graphs

Definition (Regular Graph)

A regular graph is a graph where each vertex has the same number of neighbors.
A regular graph with vertices of degree r is called a r-regular graph.

Figure: Credit:

https:

//mathworld.wolfram.com/RegularGraph.html
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https://mathworld.wolfram.com/RegularGraph.html

How powerful is the 1-WL test?

Proposition 0

1-WL test cannot distinguish regular graphs with the same number of nodes and
degree

Proof: For any d-regular graph with the same number of nodes:

» The initial colors are the same.

» 1If ¢(D (v) are the same for all nodes, then the sets of neighbors’ colors are the
same for all nodes. Thus, e (v) are the same.

> Thus, the 1-WL kernels are the same for all such graphs.

Figure 1: Two graphs not
distinguished by 1-WL.

Figure: Credit: Provably Powerful Graph Networks, Maron et al.
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K-Hop Neighborhood

What if we also collect k-th hop neighborhood for k =1,2,...,K?
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K-Hop Neighborhood

What if we also collect k-th hop neighborhood for k =1,2,...,K?
But there are different definitions of the k-th hop neighbors. The paper differentiated

two kernels:
1. shortest path distance (spd) kernel
2. and graph diffusion (gd) kernel.

In the followings, we deonte by Q’;é the k-th hop neighbors (exact) of node v in
graph G in the sense of kernel £.
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Two Kernels

> Q‘I:,std = the set of neighbors that are at a distance of k from v.

> Qk’gd = the set of neighbors that can diffuse information to node v with k

v,G

diffusion steps.

Graph Diffusion in GNNs (from DGL Docs)

Mathematically, let ¥ be the vector of node signals, then a graph diffusion operation
can be defined as y = AX , where A is the diffusion matrix.

The demonstrations in the paper use the adjacency matrix as the diffusion matrix,

ie., Qi’od is the set of neighbors reachable from v with k steps.
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Two Kernels: Example

Rooted subtree of v1 with 2-layer 1-hop
message passing

@ @)
oo‘ @—0O o ®
o

® O® @

Input Graph

Rooted subtree of v1 with 2-layer 2-hop message passing (Shortest Path Distance Kernel)

Figure: Illustration

Blue nodes are 1st hop neighbors of the parent node.
Yellow nodes are the 2nd hop neighbors of the parent node.

] = =
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K-Hop Message Passing Framework

K-hop message passing can be formulated as:
= lk Zl-1
—MESk({(h seu)|u € Q }),
hiF = UPDL (7, ),
7Lk
h. = COMBINE! ({R:¥|k = 1,2,...,K}),

where [ is the layer number and k represents the hop number.

The COMBINE function combines the representations of node v at different hops.
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K-Hop Message Passing Framework

K-hop message passing can be formulated as:

i = MESL({(B" eun) lu € Q).
ik = UPDL (7, By),
h. = COMBINE! ({R:¥|k = 1,2,...,K}),
where [ is the layer number and k represents the hop number.
The COMBINE function combines the representations of node v at different hops.
Proposition 3
The map { (&, {(fzf{l, ew)|u € Qﬁ’é}, ;le_l)|k =12,...,K} — ;lf, is injective.

Proof:
> We know the existence of injective message functions (MES) and injective
updating functions (UPD).
» The hop number can be encoded into MES; / UPDy, their ouputs (e.g., simply
append the number k to the output vector).

> Thus, the overall mapping is injective.
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K-Hop Message Passing Framework

K-hop message passing can be formulated as:
g = MESL({ (B, ew) lu € QL))
hy* = UPDL (7, hy).
h. = COMBINE! ({R:¥|k = 1,2,...,K}),

where [ is the layer number and k represents the hop number.

The COMBINE function combines the representations of node v at different hops.

Proposition 3
The map { (&, {(;Lf:l, ew)|u € Q];’é}, ;le_l)|k =12,...,K} — ;lf, is injective.

Proof:

> We know the existence of injective message functions (MES) and injective
updating functions (UPD).

» The hop number can be encoded into MES; / UPDy, their ouputs (e.g., simply

append the number k to the output vector).

> Thus, the overall mapping is injective.

We say a K-hop MPNN is "proper" if all the message, update, and combine functions

are all injective given the input from a countable space.

Paper Sharing: How
Powerful are K-hop
Message Passing Graph
Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test
Multi-Hop Neighborhood
K-Hop Message Passing

Expressivity of K-Hop MPNN

KP-GNNs
KP-GNNs

Expressivity of KP-GNN
Complexity

Experiment



K-Hop MPNN is Strictly More Powerfull Than 1-WL Powertl e K hop

Message Passing Graph

Proposition 1 Neural Networks
Yicheng Wang
A proper K-hop MPNN (K > 1) is strictly more powerful than 1-WL test.
K-Hop MPNNs
Proof: 1-hop MPNN and 1-WL Test
1. The proper K-hop message passing at each layer provides richer information Multi-Hop Neighborhood
K-Hop Message Passing
than 1-WL. Expressivity of K-Hop MPNN
2. There are examples in which the proper K-hop MPNN is better. B
------------------------------------------------- KP-GNNs
Expressivity of KP-GNN

Complexity
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A Stronger Statement

Theorem (1)

Let n, r be integers (r satisfies some condition). With at most K = Ky, there exists a
1-layer K-hop MPNN with the spd kernel that can distinguish almost all pairs of n-sized
r-regular graphs.

> 3<r< (210g2n)1/2

(1 log2n
> Ko=L(;+€) ng -

> "almost all" means 1 — o(n~'/2) probability.
> ¢ is a constant used in another paper the authors cited to prove this theorem.

See the paper for theoretical analysis on existing GNNs using the K-hop message
passing framework.
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Upperbound

Theorem (2)

A proper K-hop MPNN with any kernel is at most as expressive as the 3-WL test.
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Upperbound

Theorem (2)

A proper K-hop MPNN with any kernel is at most as expressive as the 3-WL test.

Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
(Frasca et al.) showed that:

Lemma 1

Any subgraph-based GNNs with node-based selection policy can be implemented by
3-IGN and thus their expressive power is bounded by 3-WL test.

Proof: Can show that K-hop MPNNs with any of the two kernels can also be
implemented by 3-IGN. (The authors directly follow all the definitions and notations
in Frasca et al’s paper).

In summary, the K-hop MPNNs’ expressivity: between 1-WL (2-WL) and 3-WL.
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How Powerful is 3-WL Test?

Facts:
» 1-WL and 2-WL have equivalent expressivity. (Provably Powerful Graph
Networks, Maron et al.)
The Pure Transformer paper (Kim et al.) used the term 2-WL.

> 3-WL test cannot distinguish non-isomorphic distance-regular graphs.
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How Powerful is 3-WL Test?

Facts:

> 1-WL and 2-WL have equivalent expressivity. (Provably Powerful Graph
Networks, Maron et al.)
The Pure Transformer paper (Kim et al.) used the term 2-WL.

> 3-WL test cannot distinguish non-isomorphic distance-regular graphs.

Definition (Distance-Regular Graph)

A regular graph such that for any u, v the number of vertices "at distance j from u
and at distance k from v" depends only on j, k, and the distance between u and v.

Definition (Intersection Array)

A graph of diameter d is distance-regular iff there exists (characterized by) an
intersection array (b, by, ..., bg_1; ¢, - .., ¢q) such that for j=1,..., d, for any pair
of u, v with distance j:

> b; = # neighbors of u at distance j + 1 from v,

> ¢j = # neighbors of u at distance j — 1 from v.
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Distance-Regular Graph Example

tetrahedral graph wility graph cubical graph Petersen graph
Heawood graph Pappus graph Desargues graph dodecahedral graph
Coxeter graph Levi graph

Figure: Credit: https://mathworld.wolfram.com/Distance-RegularGraph.html

] = =
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https://mathworld.wolfram.com/Distance-RegularGraph.html

Peripheral Subgraph

Motivation:
» K-hop MPNNS capture the heirarchy of neighbors at each hop.

> What if we also capture the connectivity among neighbors at each hop?
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Peripheral Subgraph

Motivation:
» K-hop MPNNS capture the heirarchy of neighbors at each hop.

> What if we also capture the connectivity among neighbors at each hop?

Definition (Peripheral Edge and Subgraph)

The peripheral edge E (thG) is defined as the set of edges among nodes in Qfé

The peripheral subgraph G’;tG is defined as the subgraph in G induced by Q‘Iftc

Figure: Illustration
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Peripheral Subgraph Example

The subgraphs are exactly the same as @EUSIEIEESRNETED. showing

its superior expessivity than neighbor sets.

(6,3;1,2)
distance
regular graph

15t hop
peripheral
subgraph
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KP-GNN Framework

» The paper introduce the K-hop Peripheral-subgraph-enhanced GNN (KP-GNN),
designed to improve the expressivity of K-hop MPNN.

» The only difference: From

il = MESL (B em) lu € Q56 ))

to

il = PMES] ({(By ", ew) |u € Q5 () Gig)-

» This can be regarded as a method of feature augmentation.
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How to Encode G’;é

Encode some counting information about fo’tc:

> neighbor counts: counts of i-th hop neighbors of each node in Gf’t , where
i=1,...,k.
> edge counts: counts of peripheral edges of each node in lecé at the i-th hop (up

to k'), E(Q* ).
oK) EQy,)

Sums them up (along each hop?) to constrain the dimension.

Can be preprocessed and reused.
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k.t Paper Sharing: How

How to Encode G eamr e
> Message Passing Graph

Neural Networks

Yicheng Wang

K-Hop MPNNs
1-hop MPNN and 1-WL Test
Multi-Hop Neighborhood

K-Hop M

Passing

Encode some counting information about G‘]f’tG:

Expressivity of K-Hop MPNN
» neighbor counts: counts of i-th hop neighbors of each node in Gf’t , where KP-GNNs
i:1,...,k. KP-GNNs
. . k.t . Expressivity of KP-GNN
> edge counts: counts of peripheral edges of each node in G ; at the i-th hop (up R
. omplexity
’ it
to k), B(Q ke )- Experiment

v G
Sums them up (along each hop?) to constrain the dimension.
Can be preprocessed and reused.
Equivalent to running another 1-layer KP-GNN for Gk é?
= higher chance to distinguish neighbor structure = higher change to
distinguish the whole graph.

u]

o)
I
i

it



Details

The counting information is called k’-configuration and is denoted by C;:/.

Implementation:

£(GEG) = EMB(E(QSE), ¢f),

KPMES (o, Gf;) = MESL(D) + £ (GL),

where
> EMB is an learnable embedding function.

Generalizable to other graphs.
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Expressivity of KP-GNN

Proposition 2

A proper 1-layer d-hop KP-GNN (with the specific implementation) can distinguish
two non-isomorphic distance-regular graphs with the same intersection array if the
k’-configurations of the two graphs at some hop (1 to the diameter) are different.

> A relatively weak proposition.

Peripheral Subgraph Example

In summary, KP-GNNs’ expressivity:
» > K-hop MPNN (because it encodes additional information),
> sometimes > 3-WL (at distinguishing distance-regular graph),

> upper bound unknown.
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Limitation

An intrinsic limitation that exists in K-hop/KP- GNNs:

» Using K-hop instead of 1-hop can make the receptive field of a node increase

with K.

» According to the GINE+ paper (Brossard et al.): The increased receptive field
can hurt learning.
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Space and Time Complexity

The K-hop message passing and KP-GNN:
> Both have the space complexity of O(n): Do not add additional space
complexity because of more hops.
> in terms of # (final?) representations for all nodes.

> Both have time complexity O(n?) for the shortest path distance kernel, which is
faster than subgraph-based GNNs (at least O(nm)) but slower than MPNN

(O(m)).

> in terms of # node-edge pairs involved in one run of message passing (each node

involves at most n nodes)
> The counting information is preprocessed and will be amortized to zero finally.

Remark:
1. Have to store 7nlv’k for each hop k during the computation.
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Experiment
Table 3: TU dataset evaluation result.
Method MUTAG ~ D&D  PTC-MR PROTEINS IMDB-B
Table 1: Empirical evaluation of the expressive power. ~ WL 904457  79.4+£03  59.9+43  75.0+3.1 73.8439
Method | k| EXP(ACO) SR(ACCO)  CSLaco)  GIN 89.445.6 - 64.6570 759428  75.145.1
9
| |sPb GD |SPD D |sPD op _DECMN 85.8+17 793409 58.6+25 755309  70.0£09
GraphSNN 9124425 8246227 66.96:35 76.51£25  76.93+33
o N lew ol y 5y CINaKe 9130470 - 6820556 7710457 7560437
K-GIN - o
100 66.9 | 667 06.67 | 62 42 KP-GCN 917460  79.0+47  67.1463  75.8+35 759438
100 100 | 667 667 | 927 627  Kp.GraphSAGE 917465 78.1426 66.5:40  765k46 764427
50 50 100 100 22 22 KP-GIN 92.246.5 79.4+3.8 66.8+6.8 75.8+4.6 76.6+4.2
KP-GIN VOl A R GIN-AK+" 950461  OOM 741459 789454 773431
100 100 | 100 100 | 100 100  GraphSNN 9470419 83.93:23 70.58+3.1 784227 7851428
KP-GCN* 96.1+46 832422 T7.0+41  803+42  79.6425
KP-GraphSAGE"  96.1+4.6  83.6:24 76245 80443 80324
_ = KP-GIN* 95.6+4.4  83.5+22  762:45  79.5+44  80.7+2.6
Figure: Expressivity
Figure: Real-world dataset (e.g., TU)
Table 2: Simulation dataset result. The top two are highlighted by First, Second.
Method ‘ Node Properties (log,o(MSE))  Graph Properties (log,,(MSE)) Counting Substructures (MAE)
| sssp Ecc. Lap. | Connect. Diameter Radius | Tri.  Tailed Tri.  Star  4-Cycle
GIN | -2.0000 -1.9000 -1.6000 | -1.9239 -3.3079  -4.7584 | 0.3569 0.2373 0.0224  0.2185
PNA -2.8900 -2.8900 -3.7700 -1.9395 3.4382 -4.9470 | 0.3532 0.2648 0.1278  0.2430
PPGN - - - -1.9804 -3.6147  -5.0878 | 0.0089 0.0096 0.0148  0.0090
GIN-AK+ - - - -2.7513 -3.9687 -5.1846 | 0.0123 0.0112 0.0150  0.0126
K-GIN+ -2.7919 25938  -4.6360 -2.1782 -3.9695  -5.3088 | 0.2593 0.1930 0.0165  0.2079
KP-GIN+ | -2.7969 -2.6169 -4.7687 -4.4322 -3.9361  -5.3345 | 0.0060 0.0073 0.0151  0.0395
Figure: Counting Graph Properties and Substructures

Paper Sharing: How
Powerful are K-hop
Message Passing Graph
Neural Networks

Yicheng Wang

K-Hop MPNNs
1-hop MPNN and 1-WL Test

Multi-Hop Neighborhood

K-Hop Message Passing

Expressivity of K-Hop MPNN

KP-GNNs
KP-GNNs

Expressivity of KP-GNN
Complexity

Experiment



	K-Hop MPNNs
	1-hop MPNN and 1-WL Test
	Multi-Hop Neighborhood
	K-Hop Message Passing
	Expressivity of K-Hop MPNN

	KP-GNNs
	KP-GNNs
	Expressivity of KP-GNN

	Complexity
	Experiment

