Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks https://arxiv.org/abs/2205.13328

Yicheng Wang

・ロト・日本・日本・日本・日本・日本

Outline

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs KP-GNNs Expressivity of KP-GNN

Complexity

Experiment

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

1-Hop MPNN and 1-WL Test

Definition (1-Weisfeiler-Lehman Test)

- 1. Assign a same initial color $c^{(0)}$ to all nodes.
- 2. For l = 0 to L do:
 - $c^{(l+1)}(v) = \text{HASH}(c^{(l)}(v), \{c^{(l)}(u) | u \in N(v)\}).$

Facts from the GIN paper (Xu et al.):

- ► 1-hop MPNNs are at most as expressive as the 1-WL test.
- There exists some 1-hop MPNN (with injective message passing functions) that is as expressive as the 1-WL test.

How powerful is the 1-WL test?

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test

Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

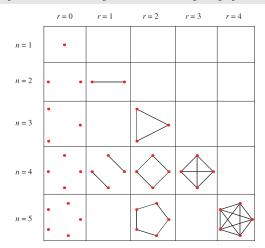
Expressivity of KP-GNN

Complexity

Regular Graphs

Definition (Regular Graph)

A regular graph is a graph where each vertex has the same number of neighbors. A regular graph with vertices of degree r is called a r-regular graph.



Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test

Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

Figure: Credit: https://mathworld.wolfram.com/RegularGraph.html

・ロマ・山マ・山田・山田・山口・

How powerful is the 1-WL test?

Proposition 0

1-WL test cannot distinguish regular graphs with the same number of nodes and degree

Proof: For any *d*-regular graph with the same number of nodes:

- ► The initial colors are the same.
- ► If c^(l) (v) are the same for all nodes, then the sets of neighbors' colors are the same for all nodes. Thus, c^(l+1) (v) are the same.
- ► Thus, the 1-WL kernels are the same for all such graphs.

Figure 1: Two graphs not distinguished by 1-WL.

Figure: Credit: Provably Powerful Graph Networks, Maron et al.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood

K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

K-Hop Neighborhood

What if we also collect *k*-th hop neighborhood for k = 1, 2, ..., K?

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

hop MPNN and 1-WL Test

Multi-Hop Neighborhood K-Hop Message Passing

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

K-Hop Neighborhood

What if we also collect k-th hop neighborhood for k = 1, 2, ..., K? But there are different definitions of the k-th hop neighbors. The paper differentiated two kernels:

- 1. shortest path distance (spd) kernel
- 2. and graph diffusion (gd) kernel.

In the followings, we deonte by $Q_{v,G}^{k,t}$ the *k*-th hop neighbors (exact) of node *v* in graph *G* in the sense of kernel *t*.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood

K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Two Kernels

- $Q_{\nu,G}^{k,spd}$ = the set of neighbors that are at a distance of k from ν .
- $Q_{v,G}^{k,gd}$ = the set of neighbors that can diffuse information to node v with k diffusion steps.

Graph Diffusion in GNNs (from DGL Docs)

Mathematically, let \vec{x} be the vector of node signals, then a graph diffusion operation can be defined as $\vec{y} = \tilde{A}\vec{x}$, where \tilde{A} is the diffusion matrix.

The demonstrations in the paper use the adjacency matrix as the diffusion matrix, i.e., $Q_{v,G}^{k,gd}$ is the set of neighbors reachable from v with k steps.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing

Expressivity of K-Hop MPNN

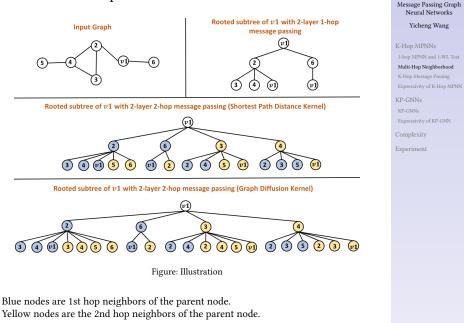
KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Two Kernels: Example



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三里 - のへで

Paper Sharing: How

Powerful are K-hop

K-Hop Message Passing Framework

K-hop message passing can be formulated as:

$$\begin{split} \vec{m}_{v}^{l,k} &= \mathrm{MES}_{k}^{l}(\{(\vec{h}_{u}^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\}), \\ \vec{h}_{v}^{l,k} &= \mathrm{UPD}_{k}^{l}(\vec{m}_{v}^{k}, \vec{h}_{v}), \\ \vec{h}_{v}^{l} &= \mathrm{COMBINE}^{l}(\{\vec{h}_{v}^{l,k} | k = 1, 2, \dots, K\}), \end{split}$$

where l is the layer number and k represents the hop number. The COMBINE function combines the representations of node v at different hops. Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood **K-Hop Message Passing** Expressivity of K-Hop MPNN KP-GNNs Expressivity of KP-GNN Complexity

4日 > 4日 > 4 日 > 4

K-Hop Message Passing Framework

K-hop message passing can be formulated as:

$$\begin{split} \vec{m}_{v}^{l,k} &= \mathrm{MES}_{k}^{l}(\{(\vec{h}_{u}^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\}), \\ \vec{h}_{v}^{l,k} &= \mathrm{UPD}_{k}^{l}(\vec{m}_{v}^{k}, \vec{h}_{v}), \\ \vec{h}_{v}^{l} &= \mathrm{COMBINE}^{l}(\{\vec{h}_{v}^{l,k} | k = 1, 2, \dots, K\}), \end{split}$$

where *l* is the layer number and *k* represents the hop number. The COMBINE function combines the representations of node v at different hops.

Proposition 3

The map $\{(k, \{(\vec{h}_u^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\}, \vec{h}_v^{l-1}) | k = 1, 2, \dots, K\} \mapsto \vec{h}_v^l$ is injective.

Proof:

- We know the existence of injective message functions (MES) and injective updating functions (UPD).
- The hop number can be encoded into MES_k / UPD_k their ouputs (e.g., simply append the number k to the output vector).
- ► Thus, the overall mapping is injective.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Mesage Passing Expressivity of K-Hop MPNN KP-GNNs KP-GNNs Expressivity of KP-GNN Complexity Experiment

- ロ ト 4 母 ト 4 団 ト 4 団 ト 一団 - うへで

K-Hop Message Passing Framework

K-hop message passing can be formulated as:

$$\begin{split} \vec{m}_{v}^{l,k} &= \mathrm{MES}_{k}^{l}(\{(\vec{h}_{u}^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\}), \\ \vec{h}_{v}^{l,k} &= \mathrm{UPD}_{k}^{l}(\vec{m}_{v}^{k}, \vec{h}_{v}), \\ \vec{h}_{v}^{l} &= \mathrm{COMBINE}^{l}(\{\vec{h}_{v}^{l,k} | k = 1, 2, \dots, K\}), \end{split}$$

where *l* is the layer number and *k* represents the hop number. The COMBINE function combines the representations of node v at different hops.

Proposition 3

The map $\{(k, \{(\vec{h}_u^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\}, \vec{h}_v^{l-1}) | k = 1, 2, \dots, K\} \mapsto \vec{h}_v^l$ is injective.

Proof:

- We know the existence of injective message functions (MES) and injective updating functions (UPD).
- The hop number can be encoded into MES_k / UPD_k their ouputs (e.g., simply append the number k to the output vector).
- ► Thus, the overall mapping is injective.

We say a K-hop MPNN is "proper" if all the message, update, and combine functions are all injective given the input from a countable space.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Mesage Passing Expressivity of K-Hop MPNN KP-GNNs KP-GNNs Expressivity of KP-GNN Complexity Experiment

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへで

K-Hop MPNN is Strictly More Powerfull Than 1-WL

Proposition 1

A proper *K*-hop MPNN (K > 1) is strictly more powerful than 1-WL test.

Proof:

- 1. The proper *K*-hop message passing at each layer provides richer information than 1-WL.
- 2. There are examples in which the proper *K*-hop MPNN is better.

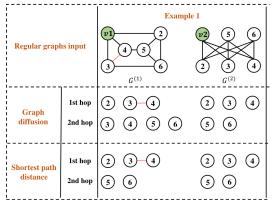


Figure: Example

< ロ > < 同 > < 三 > < 三 > <

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN KP-GNNs

Expressivity of KP-GN

Complexity

Experiment

500

A Stronger Statement

Theorem (1)

Let n, r be integers (r satisfies some condition). With at most $K = K_0$, there exists a 1-layer K-hop MPNN with the spd kernel that can distinguish almost all pairs of n-sized r-regular graphs.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

A Stronger Statement

Theorem (1)

Let n, r be integers (r satisfies some condition). With at most $K = K_0$, there exists a 1-layer K-hop MPNN with the spd kernel that can distinguish almost all pairs of n-sized r-regular graphs.

- ▶ $3 \le r \le (2 \log 2n)^{1/2}$.
- $K_0 = \lfloor \left(\frac{1}{2} + \epsilon\right) \frac{\log 2n}{\log(r-1)} \rfloor.$
- ▶ "almost all" means $1 o(n^{-1/2})$ probability.
- \bullet is a constant used in another paper the authors cited to prove this theorem.

See the paper for theoretical analysis on existing GNNs using the *K*-hop message passing framework.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Upperbound

Theorem (2)

A proper K-hop MPNN with any kernel is at most as expressive as the 3-WL test.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

-hop MPNN and 1-WL Test fulti-Hop Neighborhood

K-Hop Message Passing

Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

Upperbound

Theorem (2)

A proper K-hop MPNN with any kernel is at most as expressive as the 3-WL test.

Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries (Frasca et al.) showed that:

Lemma 1

Any subgraph-based GNNs with node-based selection policy can be implemented by 3-IGN and thus their expressive power is bounded by 3-WL test.

Proof: Can show that K-hop MPNNs with any of the two kernels can also be implemented by 3-IGN. (The authors directly follow all the definitions and notations in Frasca et al.'s paper).

In summary, the K-hop MPNNs' expressivity: between 1-WL (2-WL) and 3-WL.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

> P-GNNs xpressivity of KP-GNN

Complexity

How Powerful is 3-WL Test?

Facts:

- 1-WL and 2-WL have equivalent expressivity. (Provably Powerful Graph Networks, Maron et al.)
 The Pure Transformer paper (Kim et al.) used the term 2-WL.
- ► 3-WL test cannot distinguish non-isomorphic distance-regular graphs.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

-hop MPNN and 1-WL Test /ulti-Hop Neighborhood

K-Hop Message Passing

Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

How Powerful is 3-WL Test?

Facts:

- 1-WL and 2-WL have equivalent expressivity. (Provably Powerful Graph Networks, Maron et al.)
 The Pure Transformer paper (Kim et al.) used the term 2-WL.
- ► 3-WL test cannot distinguish non-isomorphic distance-regular graphs.

Definition (Distance-Regular Graph)

A regular graph such that for any u, v the number of vertices "at distance j from u and at distance k from v" depends only on j, k, and the distance between u and v.

Definition (Intersection Array)

A graph of diameter *d* is distance-regular iff there exists (characterized by) an intersection array $(b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d)$ such that for $j = 1, \ldots, d$, for any pair of *u*, *v* with distance *j*:

- ► $b_j = #$ neighbors of u at distance j + 1 from v,
- ► $c_j = \#$ neighbors of u at distance j 1 from v.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

-hop MPNN and 1-WL Test Aulti-Hop Neighborhood

Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

くちゃく 聞き (画を) (目を)

Distance-Regular Graph Example

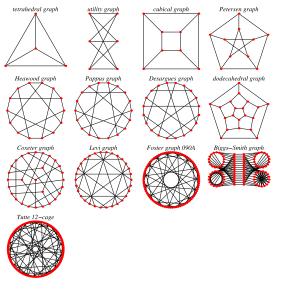


Figure: Credit: https://mathworld.wolfram.com/Distance-RegularGraph.html

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs 1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN KP-GNNs Expressivity of KP-GNN Complexity

Experiment

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

Peripheral Subgraph

Motivation:

- ► K-hop MPNNs capture the heirarchy of neighbors at each hop.
- ▶ What if we also capture the connectivity among neighbors at each hop?

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

4日 > 4日 > 4 日 = 4 日 = 4 1 H > 4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 4 1 H > 4 H

Peripheral Subgraph

Motivation:

- ► K-hop MPNNs capture the heirarchy of neighbors at each hop.
- ▶ What if we also capture the connectivity among neighbors at each hop?

Definition (Peripheral Edge and Subgraph)

The peripheral edge $E(Q_{v,G}^{k,t})$ is defined as the set of edges among nodes in $Q_{v,G}^{k,t}$. The peripheral subgraph $G_{v,G}^{k,t}$ is defined as the subgraph in *G* induced by $Q_{v,G}^{k,t}$.

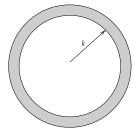


Figure: Illustration

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

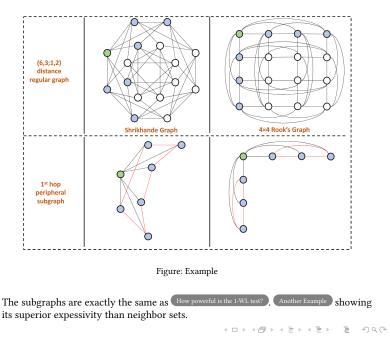
Expressivity of KP-GNN

Complexity

Experiment

- ロ ト 4 母 ト 4 団 ト 4 団 ト 一団 - うへで

Peripheral Subgraph Example



Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

KP-GNN Framework

- The paper introduce the K-hop Peripheral-subgraph-enhanced GNN (KP-GNN), designed to improve the expressivity of K-hop MPNN.
- ► The only difference: From

$$\vec{m}_{v}^{l,k} = \text{MES}_{k}^{l}(\{(\vec{h}_{u}^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\})$$

to

$$\vec{m}_{v}^{l,k} = {}^{\mathrm{KP}}\mathrm{MES}_{k}^{l}(\{(\vec{h}_{u}^{l-1}, e_{uv}) | u \in Q_{v,G}^{k,t}\}, G_{v,G}^{k,t}).$$

This can be regarded as a method of feature augmentation.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

・ロット語・ (曲)・ (日)・

How to Encode $G_{\nu,G}^{k,t}$

Encode some counting information about $G_{v,G}^{k,t}$:

- neighbor counts: counts of *i*-th hop neighbors of each node in $G_{\nu,G}^{k,t}$, where i = 1, ..., k'.
- edge counts: counts of peripheral edges of each node in $G_{v,G}^{k,t}$ at the *i*-th hop (up to k'), $E(Q_{u,G_{v,G}^{k,t}}^{i,t})$.
- Sums them up (along each hop?) to constrain the dimension.
- Can be preprocessed and reused.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

How to Encode $G_{\nu,G}^{k,t}$

Encode some counting information about $G_{v,G}^{k,t}$:

- neighbor counts: counts of *i*-th hop neighbors of each node in $G_{v,G}^{k,t}$, where $i = 1, \ldots, k'$.
- edge counts: counts of peripheral edges of each node in $G_{v,G}^{k,t}$ at the *i*-th hop (up to k'), $E(Q_{u,G_{v,G}^{k,t}}^{i,t})$.
- Sums them up (along each hop?) to constrain the dimension.
- ► Can be preprocessed and reused.

Equivalent to running another 1-layer KP-GNN for $G_{v,G}^{k,t}$? Peripheral Subgraph Example \implies higher chance to distinguish neighbor structure \implies higher change to distinguish the whole graph.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Details

The counting information is called k'-configuration and is denoted by $C_k^{k'}$. Implementation:

$$\begin{split} f(G_{v,G}^{k,t}) &= \operatorname{EMB}(E(Q_{v,G}^{k,t}), C_k^{k'}), \\ \mathrm{^{KP}MES}_k^l(\Box, G_{v,G}^{k,t}) &= \operatorname{MES}_k^l(\Box) + f(G_{v,G}^{k,t}), \end{split}$$

where

EMB is an learnable embedding function.

Generalizable to other graphs.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

・ロト・西ト・ヨト・ヨー つへで

Expressivity of KP-GNN

Proposition 2

A proper 1-layer *d*-hop KP-GNN (with the specific implementation) can distinguish two non-isomorphic distance-regular graphs with the same intersection array if the k'-configurations of the two graphs at some hop (1 to the diameter) are different.

A relatively weak proposition.

Peripheral Subgraph Example

In summary, KP-GNNs' expressivity:

- ► > K-hop MPNN (because it encodes additional information),
- ► sometimes > 3-WL (at distinguishing distance-regular graph),
- upper bound unknown.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

・ロマ・山マ・山田・山田・山口・

Limitation

An intrinsic limitation that exists in K-hop/KP- GNNs:

- ▶ Using *K*-hop instead of 1-hop can make the receptive field of a node increase with *K*.
- According to the GINE+ paper (Brossard et al.): The increased receptive field can hurt learning.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

・ロト・西ト・ヨト・ヨー つへで

Space and Time Complexity

The K-hop message passing and KP-GNN:

- Both have the space complexity of O(n): Do not add additional space complexity because of more hops.
 - in terms of # (final?) representations for all nodes.
- Both have time complexity $O(n^2)$ for the shortest path distance kernel, which is faster than subgraph-based GNNs (at least O(nm)) but slower than MPNN (O(m)).
 - in terms of # node-edge pairs involved in one run of message passing (each node involves at most n nodes)
 - The counting information is preprocessed and will be amortized to zero finally.

Remark:

1. Have to store $\vec{m}_{v}^{l,k}$ for each hop *k* during the computation.

Paper Sharing: How Powerful are K-hop Message Passing Graph Neural Networks

Yicheng Wang

K-Hop MPNNs

1-hop MPNN and 1-WL Test Multi-Hop Neighborhood K-Hop Message Passing Expressivity of K-Hop MPNN

KP-GNNs

KP-GNNs

Expressivity of KP-GNN

Complexity

Experiment

Yicheng Wang Table 3: TU dataset evaluation result. Method MUTAG D&D PTC-MR PROTEINS IMDB-B Table 1: Empirical evaluation of the expressive power. WL 79,4±0.3 59.9 ± 4.3 75.0±3.1 73.8±3.9 90.4±5.7 GIN 89.4 ± 5.6 64.6 ± 7.0 75.9 ± 2.8 75.1±5.1 EXP (ACC) SR (ACC) CSL (ACC) Method к DGCNN 85.8 ± 1.7 79.3 ± 0.9 58.6 ± 2.5 75.5 ± 0.9 70.0 ± 0.9 SPD GD SPD GD SPD GD GraphSNN 91.24±2.5 82.46 ± 2.7 66.96±3.5 76 51+2 5 76 93+3 3 50 50 6.67 6.67 K=1GIN-AK+ 91.30±7.0 68.20 ± 5.6 77.10±5.7 75.60±3.7 50 50 K=26 67 6.67 32 22.7 K-GIN K=3100 66.9 6.67 6.67 62 42 KP-GCN 91.7 ± 6.0 79.0 ± 4.7 67.1 ± 6.3 75.8±3.5 75.9 ± 3.8 92.7 K=4100 100 6.67 6.67 62.7 KP-GraphSAGE 76.4±2.7 91.7 ± 6.5 78.1 ± 2.6 66.5 ± 4.0 76.5 ± 4.6 22 KP-GIN 92.2 ± 6.5 79.4 ± 3.8 66.8 ± 6.8 75.8 ± 4.6 76.6+4.2 K=150 50 100 100 K=2100 100 100 100 52.7 52.7 KP-GIN GIN-AK+* 95.0+6.1OOM 74 1+5 9 78.9 ± 5.4 77.3 ± 3.1 100 100 90 90 K=3100 100 83.93+2.3 78 51+2 8 GraphSNN* 94.70 ± 1.9 70.58 ± 3.1 78.42 ± 2.7 K=4100 100 100 100 100 100 KP-GCN* 96.1±4.6 83.2 ± 2.2 77.1±4.1 80.3 ± 4.2 79.6±2.5 **KP-GraphSAGE*** 80.4±4.3 80.3 ± 2.4 96.1±4.6 83.6 ± 2.4 76.2 ± 4.5 KP-GIN* 79.5±4.4 80.7±2.6

Figure: Expressivity

 76.2 ± 4.5 95.6±4.4 83.5 ± 2.2 Figure: Real-world dataset (e.g., TU)

Paper Sharing: How

Powerful are K-hop Message Passing Graph Neural Networks

Experiment

Table 2: Simulation dataset result. The top two are highlighted by **First**, Second.

Method	Node Properties (log10(MSE))			Graph Properties (log10(MSE))			Counting Substructures (MAE)			
	SSSP	Ecc.	Lap.	Connect.	Diameter	Radius	Tri.	Tailed Tri.	Star	4-Cycle
GIN	-2.0000	-1.9000	-1.6000	-1.9239	-3.3079	-4.7584	0.3569	0.2373	0.0224	0.2185
PNA PPGN	-2.8900	-2.8900	-3.7700	-1.9395	3.4382	-4.9470	0.3532 0.0089	0.2648	0.1278	0.2430
GIN-AK+		-	-	-1.9804 -2.7513	-3.6147 -3.9687	-5.0878 -5.1846	0.0089	0.0096 0.0112	0.0148 0.0150	0.0090 0.0126
K-GIN+ KP-GIN+	-2.7919 -2.7969	-2.5938 -2.6169	-4.6360 -4.7687	-2.1782 -4.4322	-3.9695 -3.9361	-5.3088 -5.3345	0.2593 0.0060	0.1930 0.0073	0.0165 0.0151	0.2079 0.0395

Figure: Counting Graph Properties and Substructures

イロト 人間ト イヨト イヨト 3 500