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1-Hop MPNN and 1-WL Test

Definition (1-Weisfeiler-Lehman Test)

1. Assign a same initial color c (0) to all nodes.
2. For l = 0 to L do:

▶ c (l+1) (v) = HASH(c (l) (v), {c (l) (u) |u ∈ N (v) } ) .

Facts from the GIN paper (Xu et al.):
▶ 1-hop MPNNs are at most as expressive as the 1-WL test.
▶ There exists some 1-hop MPNN (with injective message passing functions) that

is as expressive as the 1-WL test.
How powerful is the 1-WL test?
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Regular Graphs
Definition (Regular Graph)
A regular graph is a graph where each vertex has the same number of neighbors.
A regular graph with vertices of degree r is called a r-regular graph.

Figure: Credit: https://mathworld.wolfram.com/RegularGraph.html

https://mathworld.wolfram.com/RegularGraph.html
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How powerful is the 1-WL test?

Proposition 0
1-WL test cannot distinguish regular graphs with the same number of nodes and
degree

Proof: For any d-regular graph with the same number of nodes:
▶ The initial colors are the same.
▶ If c (l) (v) are the same for all nodes, then the sets of neighbors’ colors are the

same for all nodes. Thus, c (l+1) (v) are the same.
▶ Thus, the 1-WL kernels are the same for all such graphs.

Figure: Credit: Provably Powerful Graph Networks, Maron et al.
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K-Hop Neighborhood

What if we also collect k-th hop neighborhood for k = 1, 2, . . . ,K?

But there are different definitions of the k-th hop neighbors. The paper differentiated
two kernels:
1. shortest path distance (spd) kernel
2. and graph diffusion (gd) kernel.

In the followings, we deonte by Qk,t
v,G the k-th hop neighbors (exact) of node v in

graph G in the sense of kernel t.
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Two Kernels

▶ Qk,spd
v,G = the set of neighbors that are at a distance of k from v.

▶ Qk,gd
v,G = the set of neighbors that can diffuse information to node v with k

diffusion steps.

Graph Diffusion in GNNs (from DGL Docs)
Mathematically, let ®x be the vector of node signals, then a graph diffusion operation
can be defined as ®y = Ã®x , where Ã is the diffusion matrix.

The demonstrations in the paper use the adjacency matrix as the diffusion matrix,
i.e., Qk,gd

v,G is the set of neighbors reachable from v with k steps.
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Two Kernels: Example

Figure: Illustration

Blue nodes are 1st hop neighbors of the parent node.
Yellow nodes are the 2nd hop neighbors of the parent node.
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K-Hop Message Passing Framework

K-hop message passing can be formulated as:

®ml,k
v = MESlk ({ (®h

l−1
u , euv ) |u ∈ Qk,t

v,G }),
®hl,kv = UPDl

k ( ®m
k
v ,
®hv ),

®hlv = COMBINEl ({®hl,kv |k = 1, 2, . . . ,K }),

where l is the layer number and k represents the hop number.
The COMBINE function combines the representations of node v at different hops.

Proposition 3
The map { (k, { (®hl−1u , euv ) |u ∈ Qk,t

v,G }, ®h
l−1
v ) |k = 1, 2, . . . ,K } ↦→ ®hlv is injective.

Proof:
▶ We know the existence of injective message functions (MES) and injective

updating functions (UPD).
▶ The hop number can be encoded into MESk / UPDk their ouputs (e.g., simply

append the number k to the output vector).
▶ Thus, the overall mapping is injective.

We say a K-hop MPNN is "proper" if all the message, update, and combine functions
are all injective given the input from a countable space.
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K-Hop MPNN is Strictly More Powerfull Than 1-WL
Proposition 1
A proper K-hop MPNN (K > 1) is strictly more powerful than 1-WL test.

Proof:
1. The proper K-hop message passing at each layer provides richer information

than 1-WL.
2. There are examples in which the proper K-hop MPNN is better.

Figure: Example
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A Stronger Statement

Theorem (1)
Let n, r be integers (r satisfies some condition). With at most K = K0, there exists a
1-layer K-hop MPNN with the spd kernel that can distinguish almost all pairs of n-sized
r-regular graphs.

▶ 3 ≤ r ≤ (2 log 2n)1/2.
▶ K0 = ⌊

( 1
2 + 𝜖

) log 2n
log(r−1) ⌋.

▶ "almost all" means 1 − o(n−1/2 ) probability.
▶ 𝜖 is a constant used in another paper the authors cited to prove this theorem.

See the paper for theoretical analysis on existing GNNs using the K-hop message
passing framework.
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Upperbound

Theorem (2)
A proper K-hop MPNN with any kernel is at most as expressive as the 3-WL test.

Understanding and Extending Subgraph GNNs by Rethinking Their Symmetries
(Frasca et al.) showed that:

Lemma 1
Any subgraph-based GNNs with node-based selection policy can be implemented by
3-IGN and thus their expressive power is bounded by 3-WL test.

Proof: Can show that K-hop MPNNs with any of the two kernels can also be
implemented by 3-IGN. (The authors directly follow all the definitions and notations
in Frasca et al.’s paper).
In summary, the K-hop MPNNs’ expressivity: between 1-WL (2-WL) and 3-WL.
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How Powerful is 3-WL Test?

Facts:
▶ 1-WL and 2-WL have equivalent expressivity. (Provably Powerful Graph

Networks, Maron et al.)
The Pure Transformer paper (Kim et al.) used the term 2-WL.

▶ 3-WL test cannot distinguish non-isomorphic distance-regular graphs.

Definition (Distance-Regular Graph)
A regular graph such that for any u, v the number of vertices "at distance j from u
and at distance k from v" depends only on j, k, and the distance between u and v.

Definition (Intersection Array)
A graph of diameter d is distance-regular iff there exists (characterized by) an
intersection array (b0, b1, . . . , bd−1; c1, . . . , cd ) such that for j = 1, . . . , d, for any pair
of u, v with distance j:
▶ bj = # neighbors of u at distance j + 1 from v,
▶ cj = # neighbors of u at distance j − 1 from v.
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Distance-Regular Graph Example

Figure: Credit: https://mathworld.wolfram.com/Distance-RegularGraph.html

https://mathworld.wolfram.com/Distance-RegularGraph.html
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Peripheral Subgraph

Motivation:
▶ K-hop MPNNs capture the heirarchy of neighbors at each hop.
▶ What if we also capture the connectivity among neighbors at each hop?

Definition (Peripheral Edge and Subgraph)
The peripheral edge E (Qk,t

v,G ) is defined as the set of edges among nodes in Qk,t
v,G .

The peripheral subgraph Gk,t
v,G is defined as the subgraph in G induced by Qk,t

v,G .

Figure: Illustration
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Peripheral Subgraph Example

Figure: Example

The subgraphs are exactly the same as How powerful is the 1-WL test? . Another Example showing
its superior expessivity than neighbor sets.
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KP-GNN Framework

▶ The paper introduce the K-hop Peripheral-subgraph-enhanced GNN (KP-GNN),
designed to improve the expressivity of K-hop MPNN.

▶ The only difference: From

®ml,k
v = MESlk ({ (®h

l−1
u , euv ) |u ∈ Qk,t

v,G })

to

®ml,k
v = KPMESlk ({ (®h

l−1
u , euv ) |u ∈ Qk,t

v,G }, G
k,t
v,G ) .

▶ This can be regarded as a method of feature augmentation.
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How to Encode Gk,t
v,G

Encode some counting information about Gk,t
v,G :

▶ neighbor counts: counts of i-th hop neighbors of each node in Gk,t
v,G , where

i = 1, . . . , k′ .
▶ edge counts: counts of peripheral edges of each node in Gk,t

v,G at the i-th hop (up
to k′), E (Qi,t

u,Gk,t
v,G

) .

▶ Sums them up (along each hop?) to constrain the dimension.
▶ Can be preprocessed and reused.

Equivalent to running another 1-layer KP-GNN for Gk,t
v,G? Peripheral Subgraph Example

=⇒ higher chance to distinguish neighbor structure =⇒ higher change to
distinguish the whole graph.
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Details

The counting information is called k′-configuration and is denoted by Ck′
k .

Implementation:

f (Gk,t
v,G ) = EMB(E (Qk,t

v,G ),C
k′
k ),

KPMESlk (□,G
k,t
v,G ) = MESlk (□) + f (Gk,t

v,G ),

where
▶ EMB is an learnable embedding function.

Generalizable to other graphs.
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Expressivity of KP-GNN

Proposition 2
A proper 1-layer d-hop KP-GNN (with the specific implementation) can distinguish
two non-isomorphic distance-regular graphs with the same intersection array if the
k’-configurations of the two graphs at some hop (1 to the diameter) are different.

▶ A relatively weak proposition.
Peripheral Subgraph Example

In summary, KP-GNNs’ expressivity:
▶ > K-hop MPNN (because it encodes additional information),
▶ sometimes > 3-WL (at distinguishing distance-regular graph),
▶ upper bound unknown.
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Limitation

An intrinsic limitation that exists in K-hop/KP- GNNs:
▶ Using K-hop instead of 1-hop can make the receptive field of a node increase

with K .
▶ According to the GINE+ paper (Brossard et al.): The increased receptive field

can hurt learning.
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Space and Time Complexity

The K-hop message passing and KP-GNN:
▶ Both have the space complexity of O (n) : Do not add additional space

complexity because of more hops.
▶ in terms of # (final?) representations for all nodes.

▶ Both have time complexity O (n2 ) for the shortest path distance kernel, which is
faster than subgraph-based GNNs (at least O (nm)) but slower than MPNN
(O (m)).
▶ in terms of # node-edge pairs involved in one run of message passing (each node

involves at most n nodes)
▶ The counting information is preprocessed and will be amortized to zero finally.

Remark:
1. Have to store ®ml,k

v for each hop k during the computation.
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Experiment

Figure: Expressivity

Figure: Real-world dataset (e.g., TU)

Figure: Counting Graph Properties and Substructures
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