$$X \sim \text{Dist.} \qquad \mu \qquad \sigma^{2} \qquad M_{X}(t) = \\ \text{Be}(p) \qquad \mathbb{P}(X=1) = p = 1 - \mathbb{P}(X=0) \qquad p \qquad p(1-p) \qquad 1 - p + pe^{t} \\ \text{Bin}(n,p) \qquad f_{Y}(k) = \binom{n}{k} p^{k} (1-p)^{n-k}, \quad k \in \mathbb{Z}_{[0,n]} \qquad np \quad np(1-p) \qquad (1-p+pe^{t})^{n} \\ \text{Geom}(p) \qquad f_{W}(k) = (1-p)^{k-1}p, \quad k \in \mathbb{Z}_{+} \qquad \frac{1}{p} \qquad \frac{1-p}{p^{2}} \qquad \frac{pe^{t}}{1-(1-p)e^{t}}, t < -\ln(1-p) \\ \text{Pois}(\lambda) \qquad f_{X}(k) = \frac{\lambda^{k}}{k!}e^{-\lambda}, \quad k \in \mathbb{Z}_{\geq 0} \qquad \lambda \qquad \lambda \qquad e^{\lambda(e^{t}-1)} \\ \text{Exp}(\lambda) \qquad \forall x \geq 0, F_{X}(x) = 1 - e^{-\lambda x}, f_{X}(x) = \lambda e^{-\lambda x} \qquad \frac{1}{\lambda} \qquad \frac{1}{\lambda^{2}} \qquad \frac{\lambda}{\lambda - t} \\ N(\mu, \sigma^{2}) \qquad f_{X}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right) \qquad \mu \qquad \sigma^{2} \qquad e^{t\mu + \frac{1}{2}\sigma^{2}t^{2}} \qquad \mathbf{V}_{X}(t) = 0$$

Expectation $\mathbb{E}(X) := \sum_{i=1} x_i f_X(x_i) = \sum_{x: f_X(x) > 0} x f_X(x)$ only when the sum is abs. conv.

Moments k-th **moment** of X: $m_k = \mathbb{E} X^k$. k-th **central moment**: $\sigma_k = \mathbb{E}[(X - \mathbb{E} X)^k]$. $\mathbb{V} X := \sigma_2 = \mathbb{E}(X - m_1)^2$. Standard deviation of X: $\sigma(X) := \sqrt{\sigma_2}$. $\mathbb{V} X = \mathbb{E}(X^2) - (\mathbb{E} X)^2$.

MGF $M_X(t) = \mathbb{E}[e^{tX}].$ $F_X \equiv F_Y$ iff $M_X(t) = M_Y(t)$ for $t \in (-h, h).$ $M_X^{(k)}(0) = \mathbb{E}[X^k].$

Mixed R.V.s $F_X(x) = C(x) + D(x)$ where C is continuous and non-decreasing and D is piece-wise constant and non-decreasing. $\mathbb{E}[X] = \int xc(x)dx + \sum xd(x)$. Don't forget the jumps. Let $p = \int_{-\infty}^{\infty} c(u)dt$. Let $f_U(u) = \frac{c(u)}{p}$ and $f_V(v) = \frac{d(v)}{1-p}$. W be a r.v. such that it equals to U with probability p. Then $F_W(x) = F_X(x)$.

Transformation Let X be a continuous r.v.. Let Y = g(X), where g is bijective and differentiable over the support D_X of X. Then Y is continuous and its pdf is $f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$.

Joint Distribution $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$. $f(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$. Marginal dist. $f_X(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) dy$.

Independence Iff can be factorized. If $X \perp \!\!\!\perp Y$ then $\mathbb{E}[u(X_1)v(X_2)] = \mathbb{E}[u(X_1) \mid \mathbb{E}[u(X_2)] = \mathbb{E}[u(X_1) \mid \mathbb{E}[u(X_2)]]$

Conditional Distribution $f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$. $F_{Y|X}(y|x) := \int_{-\infty}^{y} \frac{f_{X,Y}(x,v)}{f_X(x)} dv$. $\mathbb{P}(Y \in A|X = \cdot) \circ X : \Omega \to \mathbb{R}$ as r.v.

Conditional Expectation $\psi(x) = \mathbb{E}(Y|X=x) := \int_{-\infty}^{+\infty} y f_{Y|X}(y|x) dy$. $\mathbb{E}(Y|X) = \psi(X) := \psi \circ X : \Omega \to \mathbb{R}$. $\mathbb{E}[\mathbb{E}(Y|X)] = \mathbb{E}Y$. If $X \perp Y$, then $\mathbb{E}[Y|X=x] = \mathbb{E}Y$.

Conditional Variance $\mathbb{V}(X_2|X_1 = x_1) = \mathbb{E}[(X_2 - \mathbb{E}[X_2|X_1 = x_1])^2|X_1 = x_1] = \mathbb{E}[X_2^2|X_1 = x_1] - (\mathbb{E}[X_2|X_1 = x_1]). \ \mathbb{V}(X_2|X_1) = \mathbb{V}(X_2|X_1 = \cdot) \circ X_1 : \Omega \to \mathbb{R}. \ \mathbb{V}(X_2) = \mathbb{E}[\mathbb{V}(X_2|X_1)] + \mathbb{V}(\mathbb{E}[X_1|X_1]).$

Joint MGF $M_{X_1,X_2}(t_1,t_2) = \mathbb{E}[e^{t_1X_1+t_2X_2}]. X_1 \perp \!\!\!\perp X_2 \text{ iff } M_{X_1,X_2}(t_1,t_2) = M_{X_1}(t_1) \cdot M_{X_2}(t_2), \forall (t_1,t_2).$ Marginal $M_{X_1}(t_1) = \mathbb{E}[e^{t_1X_1}] = M_{X_1,X_2}(t_1,0). \mathbb{E}[X_1X_2] = \frac{\partial^2}{\partial t_1 \partial t_2} M(t_1,t_2) \Big|_{t_1,t_2=0}.$

Cov. and Corr. Coeff. $\operatorname{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}X) \cdot (Y - \mathbb{E}Y)] = \mathbb{E}[XY] - \mathbb{E}X \mathbb{E}Y$. $\operatorname{Cov}(X,Y) = \frac{\partial^2}{\partial t_1 \partial t_2} M(t_1, t_2)|_{t_1 = t_2 = 0} - \frac{\partial}{\partial t_1} M(t_1, 0)|_{t_1 = 0} \frac{\partial}{\partial t_2} M(0, t_2)|_{t_2 = 0}$. $\operatorname{Cov}(X, X) = \mathbb{V}X$. $\operatorname{Cov}(aX + b, Y) = a \operatorname{Cov}(X, Y)$.

 $\rho(X,Y) = \operatorname{Cor}(X,Y) = \mathbb{E}\left[\frac{X - \mathbb{E}X}{\sigma(X)} \frac{Y - \mathbb{E}Y}{\sigma(Y)}\right] = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}. \text{ If } X \perp \!\!\!\perp Y \text{ then } \rho(X,Y) = 0.$ $\mathbb{E}[Y|X] = \mathbb{E}[Y] + \rho(X,Y) \frac{\sigma(Y)}{\sigma(X)} (X - \mathbb{E}[X]), \mathbb{E}[\mathbb{V}(Y|X)] = \sigma(Y)^2 (1 - \rho(X,Y)^2).$

Transformation $f_{X+Y}(z) = \sum_{x} f_{X,Y}(x,z-x) \quad \left(= \int_{-\infty}^{+\infty} f_{X,Y}(z-y,y) dy\right).$

Let $X = (X_1, ..., X_n)$ be a cont. r.v. with jpdf $f(\cdot)$. Let $\begin{cases} y_1 = u_1(x_1, ..., x_n) \\ y_n = u_n(x_1, ..., x_n) \end{cases}$, or simply y = u(x) be a bijective differentiable transformation of X. Let the inverse of u be w, i.e., x = w(y). Then, $f_Y(y) = f_X(w(y)) \cdot |\det J_w(y)|$, where $J_w(y) = \left[\frac{\partial x_i}{\partial y_i}\right]$ is the Jacobian of w.

Variance-Covariance Matrix Let W_1 , W_2 be $m \times n$ matrices of r.v.s. Let A_1 , A_2 be $k \times m$ matrices of constants. Let B be an $n \times l$ matrix of constants. (1) $\mathbb{E}[A_1W_1 + A_2W_2]$, (2) $\mathbb{E}[A_1W_1B] = A_1\mathbb{E}[W_1]B$.

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T] = \begin{pmatrix} \mathbb{V} X_1 & \dots & Cov(X_1, X_n) \\ \vdots & \ddots & \vdots \\ Cov(X_n, X_1) & \dots & \mathbb{V} X_n \end{pmatrix}.$$

Linear Combination Let $T = \sum_{i=1}^n a_i X_i$, $W = \sum_{i=1}^m b_i Y_i$. If $E[X_i^2] < \infty$ and $E[Y_j^2] < \infty$ for i = 1, ..., n and j = 1, ..., m, then $Cov(T, W) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j Cov(X_i, X_j)$.

Bivariate Normal
$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \cdot \exp\left(-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right)\left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]\right)$$

If (X_1, X_2) is a bivariate normal r.v. parametrized by $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \pi)$, then

- $Y = a_1 X_1 + a_2 X_2$ is normally dist., $\mathbb{E} Y = a_1 \mu_1 + a_2 \mu_2$, $\mathbb{V} Y = a_1^2 \sigma_1^2 + 2a_1 a_2 \sigma_1 \sigma_2 \rho + a_2^2 \sigma_2^2$.
- The conditional of X_2 given $X_1 = x_1$ is also a normal distribution, $\mathbb{E}[X_2|X_1 = x_1] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 \mu_1)$, $\mathbb{E}[\mathbb{V}(X_2|X_1 = x_1)] = \sigma_2^2(1 \rho^2)$.

Multivariate Normal $f_X(x) = \frac{1}{(2\pi)^{n/2} |\det \Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right].$

If $X \sim N_n(\mu, \Sigma)$, then $(\Sigma^{1/2})^{-1}(X - \mu) \sim N_n(\mathbf{0_n}, I_n)$. Conversely, if $\mathbf{Z} \sim N_n(\mathbf{0_n}, I_n)$, then $\mathbf{Y} = \Sigma^{1/2}\mathbf{Z} + \mu \sim N_n(\mu, \Sigma)$.

Suppose $W \sim N_n(\mu_n, \Sigma)$. Let V = AW + b, where $A \sim \mathbb{R}^{m \times n}$, $b \sim \mathbb{R}^m$. Then, $V \sim N_m(A\mu + b, A\Sigma A^T)$.

Auxiliary Results Chebyshev's Inequality Let X be a r.v. with mean μ and variance σ^2 (finite $\mathbb{E} X^2$). Then $\forall \epsilon > 0$, $\mathbb{P}(|X - \mu| \ge a) \le \frac{\sigma^2}{\epsilon^2}$. $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$.

Convergence in Probability Let $\{X_n\}$ be a sequence of r.v.s and let X be a r.v. We say $X_n \to X$ in probability, denoted by $X_n \stackrel{\mathbb{P}}{\to} X$, if $\forall \epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(|X_n - X| \ge \epsilon) = 0$.

 $X_n \stackrel{\mathbb{P}}{\to} X, Y_n \stackrel{\mathbb{P}}{\to} Y \implies X_n + Y_n \stackrel{\mathbb{P}}{\to} X + Y. \qquad X_n \stackrel{\mathbb{P}}{\to} X, a \text{ constant} \implies aX_n \stackrel{\mathbb{P}}{\to} aX \\ (X_n \stackrel{\mathbb{P}}{\to} X, Y_n \stackrel{\mathbb{P}}{\to} Y) \implies X_n Y_n \stackrel{\mathbb{P}}{\to} XY. \ (X_n \stackrel{\mathbb{P}}{\to} X, Y_n \stackrel{\mathbb{P}}{\to} Y, Y \neq 0) \implies X_n / Y_n \stackrel{\mathbb{P}}{\to} X / Y.$

The (sequence of) estimator $\hat{\theta}_n$ is said to be a **consistent estimator** of θ if $\hat{\theta}_n \stackrel{\mathbb{P}}{\to} \theta$.

Convergence in Distribution Let $C(F_X)$ be the set of all points where $F_X(x)$ is continuous. $X_n \to X$ in distribution (/ weakly / in law), denoted by $X_n \stackrel{D}{\to} X$ (or $X_n \stackrel{D}{\to} F_X$), if $\forall x \in C(F_X), \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$.

In this case, we say F_X is the **asymptotic distribution** or the **limiting distribution** of $\{X_n\}$.

 $(X_n \xrightarrow{\mathbb{P}} X) \implies (X_n \xrightarrow{D} X)$. If $X_n \xrightarrow{D} c$, where c is a constant (i.e., non-random), then $X_n \xrightarrow{\mathbb{P}} c$. Slutsky's $X_n \xrightarrow{D} X$, $A_n \xrightarrow{D} a$, $B_n \xrightarrow{D} b \implies A_n + B_n X_n \xrightarrow{D} a + bX$. In general, if $Y_n \xrightarrow{D} Y \implies X_n + Y_n \xrightarrow{D} X.$ $M_{X_n}(t) \to M_X(t), |t| < h \implies X_n \xrightarrow{D} X.$

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then $(X_n \xrightarrow{\mathbb{P}} X) \implies g(X_n) \xrightarrow{\mathbb{P}} g(X)$. In paricular, $X_n \xrightarrow{\mathbb{P}} a \implies g(X_n) \xrightarrow{\mathbb{P}} g(a).$ $(X_n \xrightarrow{D} X) \implies g(X_n) \xrightarrow{D} g(X).$

- $\sigma^2 < \infty$). Then $\overline{X_n} \xrightarrow{D} \mu$ where μ represents the constant r.v. μ .
- **Central Limit Theorem** Let X_1, X_2, \ldots, X_n be iid random r.v.s with $\mathbb{E}|X_1|^2 < \infty$ and $\mathbb{E}|X_1| = \mu$, $\mathbb{V} X_1 = \sigma^2 > 0$. Let $Sum_n = \sum_{i=1}^n X_i$. Then $\frac{\sqrt{n}(\overline{X_n} - \mu)}{\sigma} = \frac{Sum_n - n\mu}{\sigma} \xrightarrow{D} N(0, 1)$ where N(0, 1)denotes a standard normal r.v.
- Δ -method If $\sqrt{n}(X_n \theta) \stackrel{D}{\to} N(0, \sigma^2)$, and g(x) is differentiable at $x = \theta$ with $g'(x) \neq 0$, then $\sqrt{n}[g(X_n) - g(\theta)] \xrightarrow{D} N(0, [g'(\theta)]^2 \sigma^2).$
- Confidence Interval (L, U) is a $(1 \alpha)100\%$ confidence interval for θ if $P_{\theta}[\theta \in (L, U)] = 1 \alpha$. If $Z = \frac{\sqrt{n(\hat{\theta}-\theta)}}{\sigma} \sim N(0,1)$, then the $(1-\alpha)100\%$ CI is $|Z| \leq Z_{\alpha/2}$, i.e., $\hat{\theta} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}$.
- **Statistics Basic** Unbaisedness $\mathbb{E}[T(X_1,\ldots,X_n)] = \theta$ for all $\theta \in \Theta$. Sample mean, variance: $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$. $S_n = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}^2$.
- **Method of Moment Estimation** Sample k-th moment $\overline{X^k} := \frac{1}{n} \sum_{i=1}^n X_i^k$. $\hat{\theta}_{MM}$ is the solution of the following system $\overline{X} = m_1(\theta), \overline{X^2} = m_2(\theta), \dots, \overline{X^k} = m_k(\theta)$.
- **Mean Square Est.** $MSE(\hat{\theta}) = \mathbb{E}_{\theta}[(\hat{\theta} \theta)^2]$. $Bias(\hat{\theta}) = \mathbb{E}_{\theta}[\hat{\theta}] \theta$. $MSE(\hat{\theta}) = (Bias(\hat{\theta}))^2 + \mathbb{V}_{\theta}(\hat{\theta})$.
- **Sufficient Statistics** $Y = u(X_1, ..., X_n)$ is a sufficient statistic for θ if $\mathbb{P}(X = x | Y = u(x)) =$ $\frac{\prod_{i=1}^{n} f(x_i; \theta)}{f_Y(u(x_1, \dots, x_n))} = H(x_1, \dots, x_n) \text{ does not depend on } \theta \text{ for all } x \text{ and } \theta \in \Theta.$

Theorem 0.1 (Neyman). $Y = u(X_1, \dots, X_n)$ is a sufficient statistic for θ iff there exist two functions g and h s.t. $L(\theta) = g(y; \theta) \cdot h(x)$, where h does not depend on θ .

Order Statistics The *i*-th smallest, Y_i , is called the *i*-th order statistic.

$$f_{Y_k}(y) = k \binom{n}{k} [F(y)]^{k-1} [1 - F(y)]^{n-k} f(y).$$

- **Quantiles** $\forall p \in (0, 1)$, the p-th quantile of a cont. r.v. X is $\pi_p = F_X^{-1}(p)$. Let $1 \le i < j \le n$. Then (Y_i, Y_j) is a $\mathbb{P}(i \le \text{Bin}(n, p) \le j - 1) \times 100\%$ CI for π_p .
- **Maximum Likelihood Estimator** $L(\theta; x) = \prod_{i=1}^{n} f(x_i; \theta), l(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta).$ $\hat{\theta}_{\text{mle}} = \arg \max_{\theta \in \Theta} L(\theta) = \arg \max_{\theta \in \Theta} l(\theta)$. When $l(\theta)$ is differentiable, use the first order optimality condition $\frac{\partial}{\partial \theta}l(\theta) = \mathbf{0}$.
- **Fisher Information** $I_X(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f(x;\theta)\right)^2\right]$. Score function $S(x_i;\theta) = \frac{\partial \log f(x_i;\theta)}{\partial \theta}$.

- MLE estimator first order optimality condition $\partial l(\theta)/\partial \theta = 0 \iff \sum_{i=1}^{n} S(x_i; \theta) = 0.$
- $\mathbb{E}[S(X_i;\theta)] = 0$. Therefore, the MLE estimator for X_1,\ldots,X_n can be viewed as the method of moment estimator for $S(X_1; \theta), \ldots, S(X_n; \theta)$, as $\frac{1}{n} \sum_{i=1}^n S(x_i; \theta) = 0 = \mathbb{E}[S(X; \theta)]$.
- $I_{X_i}(\theta) = \mathbb{E}[S(X_i; \theta)^2] = \mathbb{V}(S(X_i; \theta)).$ $I_X(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2} \log f(X; \theta)\right].$
- Additivity: If $X = (X_1, ..., X_n)$, X_i are iid with $f(x; \theta)$. Then $I_X(\theta) = n \cdot I_X(\theta)$.

Weak Law of Large Number Assume that $\mathbb{E}|X_1| < \infty$ and $\mathbb{E}|X_1| = \mu$ (some version requires variance Rao-Cramer Lower Bound Let $Y = u(X_1, \dots, X_n)$ be a statistic with mean $\mathbb{E}(Y) = k(\theta)$. Then $\mathbb{V}[Y] \geq \frac{[k'(\theta)^2]}{n:I_Y(\theta)}$.

If $\hat{\theta}$ is an unbiased estimator of θ , i.e., $\mathbb{E} \hat{\theta} = \theta$, then $MSE(\hat{\theta}) = \mathbb{V}(\hat{\theta}) \geq \frac{1}{n \cdot I_{\mathcal{V}}(\theta)}$.

Let $\hat{\theta}$ be an unbiased estimator of θ . Then $\hat{\theta}$ is called an **efficient estimator** of θ if $\mathbb{V} Y$ attains the Rao-Cramer lower bound: $\mathbb{V}(\hat{\theta}) = \frac{1}{n \cdot I_{\mathbf{v}}(\theta)}$.

Limiting Distribution of MLE $\hat{\theta}_{\text{MLE},n}$ of θ satisfies $\sqrt{n}(\hat{\theta}_{\text{MLE},n} - \theta) \stackrel{D}{\rightarrow} N\left(0, \frac{1}{I_{\mathcal{N}}(\theta)}\right)$.

Hypothesis Testing $\Theta = \Theta_0 \sqcup \Theta_1$. $H_0 : \theta \in \Theta_0$ null hypothesis, $H_1 : \theta \in \Theta_1$ alternative hypothesis.

Type I error: When we decide to take H_1 but really H_0 is true. **Type II error**: When we decide to take H_0 but really H_1 is true.

Critical (rejection) region: a subset C of D. Then the corresponding test of H_0 versus H_1 follows the rule: Reject H_0 if $(X_1, \ldots, X_n) \in C$, accept H_0 if $(X_1, \ldots, X_n) \notin C$.

Size of a test: We say a critical region C is of size α if $\alpha = \max_{\theta \in \Theta_0} \mathbb{P}[(X_1, \dots, X_n) \in C|\theta]$.

The **power function** of a rejection region C is $r(\theta) = \mathbb{P}[(X_1, \dots, X_n) \in C|\theta], \forall \theta \in \Theta_1, r(\theta)$ is called the **power** of the test at θ , equal to $1 - \mathbb{P}(\text{Type II error}|\theta)$.

p-value: Suppose we observe a value θ_0 of the statistic θ . Then the p-value is defined to be the probability of obtaining values of θ more extreme than θ_0 given H_0 . We reject H_0 if the p-value $\leq \alpha$, the size of the test.

Likelihood Ratio Test The **likelihood ratio statistic** is defined as $\Lambda^*(X_1, \ldots, X_n) = \frac{\max_{\theta \in \Theta_0} L(\theta; x)}{\max_{\theta \in \Theta_1} L(\theta; x)}$, where $L(\cdot; x)$ represents the likelihood function (given data x).

The **likelihood ratio test** (LRT) rejects H_0 iff $\Lambda^*(X_1,\ldots,X_n) \leq k$, where k a threshold.

We also define $\Lambda(X_1, \dots, X_n) = \frac{\max_{\theta \in \Theta_0} L(\theta; \mathbf{x})}{\max_{\theta \in \Theta} L(\theta; \mathbf{x})} = \min\{\Lambda^*(X_1, \dots, X_n, 1)\}$ and use the criterion $\Lambda(X_1,\ldots,X_n) \leq k$ for simplicity.

Most Powerful Test A subset C of the sample space is called a **best rejection region** with size α if the test with rejection region C (1)has a size α , (2)is more powerful than the test with any other subset A that also has a size α . That is, $\mathbb{P}(X \in C|\theta_1) \geq \mathbb{P}(X \in C|\theta_1)$. The test with the best rejection region with size α is called the **most powerful test** (MPT) with size α .

Neyman-Pearson Theorem: if k satisfies $\alpha = \mathbb{P}(\lambda(x) \le k | \theta_0)$, then the LRT with the threshold k is the most powerful test with size α .