X ~ Dist. u o Mx(1) =

Be(p) P(X=1)=p=1-P(X=0) p p(l-p) 1-p+pe

Bin(n,p)  fr(k) = ()p*(1=p)"™*, keZom  np np(l=p) (1-p+pe)"

Geom(p)  fw(k) = (kl -p)*'p, keZ, ; oF v(iﬁ” <=In(l1-p)
Pois(1)  fx(k)=45e™t, keZsg A A ete=1)

Exp(1)  V¥x >0, FX(x) =l-e ™ fx(x) =¥ L L A

N o?)  fx(x) = 5 exp (-527) uoo? et

Expectation E(X) := X,_; x; fx(xi) = X (x)>0 Xfx (x) only when the sum is abs. conv.

Moments k-th moment of X: m; = E XK. k-th central moment: o = E[(X - EX)¥]. VX
o = E(X = m)?. Standard deviation of X: o (X) := yo2. VX = E(X?) - (EX)>.

MGF Mx(1) = E[¢'X]. Fx = Fy iff Mx(1) = My (1) for 1 € (—h, h). M (0) = E[X*].

Mixed R.V.s Fx(x) = C(x) + D(x) where C is continuous and non-decreasing and D is piece-wise
constant and non-decreasing. E[X] = / xc(x)dx + Y, xd(x). Don’t forget the jumps.

Let p = f c(u)dt. Let fy(u) = C(“) and fy(v) = d(v) . W be ar.v. such that it equals to U
with probability p. Then Fy (x) = F Y (x).

Transformation Let X be a continuous r.v.. Let Y = g(X), where g is bijective and differentiable
over the support Dy of X. Then Y is continuous and its pdfis fy (y) = fx(g~'(»)) - | g~} (y)|

Joint Distribution Fx y(x,y)
S5 oy (x,9)dy.
Independence Iff can be factorized. If X 1LY then E[u(X)v(X3)] = Eu(X)) Ev(X>).

=P(X <x,Y <y). f(x,y) = Fx y(x,y). Marginal dist. fx(x) =

6x6y

fxy (x,y)

L Fyix (vl = 0 ff)y(g)v)dV P(Y € AlX =)o

Conditional Distribution fy|x(y|x) =
X:Q - Rasr.v.

Conditional Expectation ¢ (x) = E(Y|X = x) := f;zo yirx(l)dy. EY|X) =y (X) =y oX:
Q — R.E[E(Y|X)]

=EY.IfX1Y, thenE[Y|[X =x] =EY
Conditional Variance V(X>|X, = x;) = E[(X; - E[X2|X; = x])?X, = x] = E[X?|X; =

x1] = (E[X2|X1 = x1]). V(X2lX1) = V(X2]|X; = 1) o X1 : Q — R.V(X3) = E[V(Xz2|Xy)] +
V(E[X(]X1]).
Joint MGF My, x, (t1,12) = E[e"X1*2X2]. X1 1 X5 iff Mx, x,(11,12) = Mx, (t1) - Mx, (12),V(t1,12).
Marginal My, (11) = E[e"1] = My, x, (11,0). E[X, Xa] = 52 atzM(tl,tg)) .
t,0=

Cov. and Corr. Coeff. Cov(X,Y) = E[(X-EX) - (Y —EY)] = E[XY] -EXEY. Cov(X,Y) =
2
S M (11, 12) =00 — =M (11,0)]1,=0 2% M(0, 12) |=0. Cov(X,X) = VX. Cov(aX +b,Y) =

aCov(X,Y).
o(X,Y) = Cor(X,Y) =E [’f;gf Y(;gf] = SoXD) If X ALY then p(X.Y) =0
E[Y|X] = E[Y] +p(X, V) Z5 (X — E[X]), E[V(Y[X)] = o(¥)?(1 - p(X, Y)?).

Transformation fx.,y(z) =X, fx.y(x,z—x) (= /_1:0 fxy(z—y, y)dy) .

=ui(xg,...,xn)

Yn = p(X1,. .., X,)
y = u(x) be a bijective differentiable transformaion of X. Let the inverse of u be w, i.e.,

, where Jy, (y) = [6x, ] is the Jacobian of w.

Let X = (X1,...,X,) be a cont. r.v. with jpdf f(-). Let , or simply

x =w(y). Then,

Variance-Covariance Matrix Let W, W, be m X n matrices of r.v.s. Let Ay, A, be k X m matrices
of constants. Let B be an n X [ matrix of constants. (1) E[A;W; + A,W>], (2) E[A, W B] =
A E[W{]B.

Cov(X) =

Linear Combination Let 7 = Y a;X;, W = X", b;Y;.
i=1,...,nand j =1,...,m,then

If E[X?] < o and E[sz] < oo for

2 2
. . _ 1 . _ 1 X—Hi _ XM Y_H2 Y—H2
Bivariate Normal fxy(x,y) = Fy— s exp( pTgE) [( = ) Zp( = )( - )+( = ) D
If (X1, X2) is a bivariate normal r.v. parametrized by (u1, 2, 077, 07, 7), then

e Y =a1X;+axX,isnormally dist., EY = aju; +axun, VY = a%o’l2 +2ajay0100p + a%o-zz.

e The conditional of X, given X; = x; is also a normal distribution, E[X,|X; = x1] =
2+ pZ(x1 = 1), B[V(Xa| Xy = x1)] = 05(1 = p?).
Multivariate Normal fx (x) = W exp [—%(x -’z N (x - u)].

If X ~ N,(u,X), then x?)-1(x - H) ~ N, (0,,1I,). Conversely, if Z ~ N,(0,,1I,), then
Y=X"2Z+pu~N,(1,L).

Suppose W ~ N,,(tn,X). Let V.= AW + b, where A ~ R"™*", b ~ R™. Then, V ~ N,,,(Au +
b,ATAT).

Auxiliary Results Chebyshev’s Inequality Let X be a r.v. with mean u and variance o2 (finite E X?).
Then Ve > O,P(IX —/1| > a) < ‘:_22 hmn—)oo (l + %)ﬂ — ex_

Convergence in Probability Let {X,,} be a sequence of r.v.s and let X be ar.v. We say X,, — X in
probability, denoted by X,, LN X,if Ve > 0,lim, o P(|X,, — X| > €) =

The (sequence of) estimator 8,, is said to be a consistent estimator of 6 if

Convergence in Distribution Let C(Fx) be the set of all points where Fx(x) is continuous.
X, — X in distribution (/ weakly / in law), denoted by X, 2) X (or X, g Fx), if

In this case, we say F is the asymptotic distribution or the limiting distribution of {X,,}.



P . .
X, - X)) = (X, A X). If X, A ¢, where c is a constant (i.e., non-random), then
Slutsky’s

Y, 2y =5 x,+v, 2 x.

X, ﬂ c. . In general, if

Let g : R — R be a continuous function. Then . In paricular,

P P
Xpn = a = g(Xp) — g(a).

Weak Law of Large Number AssumethatE |X;| < co and E X| = u (some version requires variance

0% < ). Then where u represents the constant r.v. u.

Central Limit Theorem Let X, X5, ..
VX, =0%>0. Let Sum, = ¥/, X;. Then
denotes a standard normal r.v.

., X,, be iid random r.v.s with E|X;|?> < oo and EX;| = pu,
where N (0, 1)

A-method If \n(X, — 0) RN N(0,0?), and g(x) is differentiable at x = # with g’(x) # 0, then

Confidence Interval (L,U) is a (1 — a)100% confidence interval for 8 if P4[0 € (L,U)] =1 - a.

If Z = Y228 N(0, 1), then the (1 = @)100% Clis |Z] < Zap, ie, 0 % Zzap.

Statistics Basic Unbaisedness E[T(X},...,X,)] =0 forall 6 € ©.

2

e W = ] _ 1 )2 - | 2 ¥
Sample mean, variance: X, = - 37 X;. Sp = o X (Xi = X) = 5 XL X - X

Method of Moment Estimation Sample k-th moment X* := Lyn xk
O is the solution of the following system X = m; (0),? =my(0),... ,F =mi(0).
Mean Square Est. MSE(8) = E¢[(6 — 6)?]. Bias(d) = E¢[6] — 6. MSE(f) = (Bias())? + V¢(6).
Sufﬁcier:lt Statistics ¥ = u(Xj,..
L CED (g,

Theorem 0.1 (Neyman). Y = u(Xy,...,X,) is a sufficient statistic for 0 iff there exist two
Sfunctions g and h s.t. L(0) = g(y; 0) - h(x), where h does not depend on 6.

., X,,) is a sufficient statistic for 6 if P(X = x|Y = u(x)) =
., X, ) does not depend on @ for all x and § € ©.

Order Statistics The i-th smallest, Y;, is called the i-th order statistic.
Fre ) = k() IFWMIFT = FOD)I"* F ().
Quantiles Vp € (0, 1), the p-th quantile of a cont. r.v. X is 7, = F)}l (p).
Let1 <i < j <n. Then (Y;,Y;)isaP(i < Bin(n, p) < j - 1) x 100% CI for r,.

ie f(x:0),1(68) =log L(0) = L., log f(x;: 6).

Omie = arg maxy.q L(0) = argmaxgeq [(0). When [(6) is differentiable, use the first order
optimality condition %1(0) =0.

Maximum Likelihood Estimator L(60;x) =

: : _rl(e o) - g = Qlog f(x::0)
Fisher Information /x(6) = E |( 35 log f(x;0)] |. Score function S(x;;0) = —=55"".

* MLE estimator first order optimality condition 91(6)/00 =0 <= X, S(x;;60) = 0.

E[S(X;;0)] = 0. Therefore, the MLE estimator for X1, . . ., X,, can be viewed as the method
of moment estimator for S(X1;0),...,S(X,;8), as % 1 S(xi30) =0=E[S(X;0)].

o Ix,(0) = E[S(X;;60)*] = V(S(Xi;0)). Ix(0) =E —56—(,2210gf(X; 0) |-
« Additivity: If X = (X,..., Xn), X; are iid with £(x;0). Then Ix (6) = n - Ix(0).

Rao-Cramer Lower Bound Let Y = u(Xj,..., X)) be a statistic with mean E(Y) = k(#). Then

V[Y] > [k (6)*]

= nIx(0) "

If 6 is an unbiased estimator of 6, i.e., Ed = 6, then MSE(0) = V() > #«9)’

Let § be an unbiased estimator of 8. Then § is called an efficient estimator of 6 if VY attains

the Rao-Cramer lower bound: V(6) = IO IXl(g)'

Limiting Distribution of MLE 0y g, of 6 satisfies V(.. — 6) 2N (o, #9))
Hypothesis Testing ©® = ©yLI0,. Hy : 8 € ©¢ null hypothesis, H; : § € O, alternative hypothesis.

Type I error: When we decide to take H; but really Hy is true. Type II error: When we decide
to take Hy but really H; is true.

Critical (rejection) region: a subset C of D. Then the corresponding test of Hy versus H;
follows the rule: Reject Hy if (X1, ..., X,) € C, accept Hy if (X1,...,X,) ¢ C.
Size of a test: We say a critical region C is of size « if

The power function of a rejection region C is . r(0)is

called the power of the test at 6, equal to 1 — P(Type II error|8).

p-value: Suppose we observe a value 6 of the statistic 6. Then the p-value is defined to be the
probability of obtaining values of § more extreme than 6y given Hy. We reject Hy if the p-value
< a, the size of the test.

Likelihood Ratio Test The likelihood ratio statistic is defined as ,
where L(-;x) represents the likelihood function (given data x).

The likelihood ratio test (LRT) rejects Hy ifft A*(X1,...,X,) < k, where k a threshold.

We also define and use the criterion

A(X1,...,X,) < k for simplicity.

Most Powerful Test A subset C of the sample space is called a best rejection region with size « if
the test with rejection region C (1)has a size a, (2)is more powerful than the test with any other
subset A that also has a size @. That is, P(X € C|0;) > P(X € C|6;). The test with the best
rejection region with size « is called the most powerful test (MPT) with size «.

Neyman-Pearson Theorem: if k satisfies @ = P(A(x) < k|6p), then the LRT with the threshold
k is the most powerful test with size .



