
COMP 5712 Introduction to Combinatorial Optimization

April 8, 2024

Contents

1 Introduction 2

1.1 What is combinatorial optimization . 2
1.2 P and NP . 3

2 Steiner Tree Problem 4

2.1 Metric Steiner Tree Problem . 4
2.2 General Steiner Tree Problem . 5

3 Metric Traveling Salesman Problem 6

3.1 2-approximate Algorithm . 6
3.2 ★ 3/2-approximate Algorithm . 6

4 Linear Programming 7

4.1 Matrix Representation . 8
4.2 LP Duality . 9

5 MinimumWeighted Vertex Cover 11

5.1 The dual of the LP relaxation . 13
5.2 Unweighted . 14

6 Set Cover Problem 14

6.1 A LP Relaxation and A Randomized Approximation . 14
6.2 ★ The Dual of the Relaxation and A Greedy Algorithm . 17

7 Network flow 18

7.1 Definition . 18
7.2 Max flow min cut theorem . 20
7.3 Fattest Augmenting Path Algorithm . 20
7.4 Strongly Polynomial Time: Edmonds-Karp Algorithm . 21
7.5 Bipartite Graphs . 22

8 Appendix 23

1

Course Information

• Midterm: 7-10 pm, 27th Mar

• Homework:

– Encouraged to discuss
– Can take hints from the Prof. and TAs
– Cannot search answers (google, past homework)
– When start writing, cannot look at any reference (books, notes, websites), start from blank pages.
– Acknowledge people discussed with (TAs, students)

1 Introduction

1.1 What is combinatorial optimization

Combinatorial: Study of finite discrete structure, e.g., graph.
Combinatorial optimization problem:
E.g., the input is a weighted graph. Problems can be

1. Shortest path: find the shortest path between two vertices. =⇒ Polynomial-time Dijkstra’s algorithm

2. Minimum spanning tree: find a spanning tree (connected and acyclic) of minimum cost. =⇒ Polynomial-
time Prim’s or Kruskal’s algorithm.

3. Traveling salesman problem (TSP): find the shortest closed path that visit each node exactly once. The total
number of cycles in a complete graph is approximately 𝑛!. =⇒ Currently no polynomial-time algorithm.
It is NP-complete.

Common features:

• Each instance (input) of the problem is associated with a set of finite and feasible solutions (can be
enumerated by bruteforce, e.g. “any spanning tree” for MST, “any cycle visiting each node exactly once”
for TSP).

• Each feasible solution is associated with a number, called the “objective function value”. Typically the
feasible solution is described in a concise manner rather than being implicitly listed.

• The goal is to develop an algorithm that finds the feasible solution that minimizes/maximizes the objective
function value.

Definition 1.1 (Decision problem). The problem whose answer is either yes or no.

The examples above are not decision problems themselves, but have some closely associated decision version.
E.g.,

1. “Given a weighted graph 𝐺 and a number 𝑘 , does 𝐺 have a path between the two nodes with distance at
most 𝑘?” for the shortest path problem;

2. “Given a completed weighted graph 𝐺 and a number 𝑘 , does 𝐺 have a TSP tour with distance at most 𝑘?”
for TSP.

2

Optimization problems are harder than their corresponding decision problem: If we have the optimimal
solution, we can solve the decision version immediately by comparing the solution with 𝑘 .

On the other hand, if we have an polynomial-time solution for the decision problem, we can also solve the
optimization version in polynomial time. E.g., for MST, use binary search to try different value of 𝑘 . Note that
enumerating from 1 to 𝑤 (the largest possible weight) is exponential. Because in the worst case, edge weights
can be 𝑤, 1, 1, 1, . . ., so the input is at least of log𝑤 bits, so 𝑤 is exponential to the input length log𝑤 . TODO
remove the edge safely.

Therefore, the optimization problem and the decision version are equivalent up to polynomial time.
the end of lecture 1 (7 Feb)

1.2 P and NP

Here are the informal but intuitive definitions of the complexity classes P and NP.

Definition 1.2 (P (Polynomial time)). The class of decision problems that can be solved (solution exists) in
polynomial time.

P.S.: from now on, whenever we some a problem is in some complexity class that consists only of decision
problems, it means the decision version of that problem is in the class.

We don’t know whether TSP belongs to P, but it is believed that it does not. TSP is NP-complete.

Definition 1.3 (NP (Non-deterministic polynomial time)). The class of decision problems that there is (ex-
ists) a YES-certificate. More explicitly, for any YES-instance (input whose answer is YES), there exists a short
proof/certificate that convince you the answer is YES (“short proof” means that its size is polynomial to the input
size and can be check in polynomial time).

• the definition does not specify the condition on the time to find the proof.

E.g., TSP is in NP: for any YES-instance, the certificate can be some TSP tour with distance at most 𝑘 . Verti-
fying this tour is indeed of length ≤ 𝑘 (hence confirm that the answer is YES) can be done in polynomial time.

Proposition 1.1. P is a subset of NP

Proof 1.1. Just take the YES-certificate as an empty string, then the checking process just ignore the certificate
and solve the problem using the polynomial-time algorithm by itself.

Definition 1.4 (NP-complete). A problem Π is said to be NP-complete if

1. It belongs to NP

2. There exists a polynomial-time reduction from any other NP problem to Π. (polynomial-time reduction
from Π1 to Π2 means that the reduction itself is polynomial-time. Therefore, if Π2 can be solved in poly-
nomial time then Π1 can be reduced to it and be solved in polynomial time too.)

Remark 1. Problems in NP-complete are equivalent up to polynomial time: “any other NP problem” can be
another NP-complete problem.

As long as one NP-complete problem is shown to be P, then all NP problems are P. They are the hardest NP
problems.
Remark 2 (Asymmetry in NP). Do there exist NO-certificates for NP problems?

E.g., for TSP, having a NO-certificate means that there is a short proof that𝐺 have no TSP tour with distance
at most 𝑘 . An obvious proof is to check every possible TSP tour, which is certainly not short.

We have no answer to whether NP problems have a NO-certificate, but the general belief is that the answer
is no.

YES-certificate and NO-certificate are asymmetric.

3

Definition 1.5 (NP-hard). Only the second condition of NP-complete.

• NP-hard problems can be optimization problems.

2 Steiner Tree Problem

Reference book: Lecture 2 of Luca Trevisan - Lecture Notes - 2011 Stanford cs261

2.1 Metric Steiner Tree Problem

Definition 2.1 (Steiner Tree Problem). Given a set 𝑋 = 𝑅 ∪ 𝑆 of points, where 𝑅 is the set of required points
and 𝑆 is the set of optional/Steiner points, and a symmetric distance function 𝑑 : 𝑋 × 𝑋 → R≥0 (undirected
complete graph). The goal is to find a minimum cost tree in 𝐺 that contains all nodes in 𝑅 and possibly some in
𝑆 .

Remark 3. This is very similar to MST, and the key difference lies in vertices required to span.

Definition 2.2 (Metric Steiner Tree Problem). Restricted to the case in which 𝑑 satisfies the triangle inequal-
ity, i.e., ∀𝑢, 𝑣,𝑤, 𝑑 (𝑢, 𝑣) ≤ 𝑑 (𝑢,𝑤) + 𝑑 (𝑤, 𝑣).

A distance function that is symmetric and satisfies the triangle inequality is called a semi-metric (to be a
metric, 𝑑 (𝑥,𝑦) = 0 ⇐⇒ 𝑥 = 𝑦)

The decision versions of these problems are NP-complete.

Theorem 2.1 (2-approximate algorithm). The following approximation algorithm is a 2-approximation:

1. Construct a subgraph induced by 𝑅.

2. Return the MST of 𝑅 in the subgraph.

Proof 2.1. Consider the optimal Steiner tree of cost 𝑂𝑃𝑇 .
We double the edges in the tree. Then all the nodes have even degrees. Therefore, the graph have Eulerian

tours. An Eulerian tour can be derived by running a DFS starting from an arbitrary node, at each node:

• Go to its neighbours that are not visited.

• Go back to its predecessor only if there is none

This Eulerian tour is of length exactly 2𝑂𝑃𝑇 .
Now we construct a spanning tree of 𝑅 in the tour: We record the order of nodes in 𝑅 in which they firstly

present in the tour 𝑟1 → 𝑟2 → · · · → 𝑟 |𝑅 | . Then paths on the tour (𝑟1, . . . , 𝑟2), (𝑟2, . . . , 𝑟3), ... , (𝑟 |𝑅 | , . . . , 𝑟1)
comprise a partition of the tour, of total length 2𝑂𝑃𝑇 . And the path (𝑟1, 𝑟2, . . . , 𝑟 |𝑅 |) (edges connecting adjacent
nodes exist) (drop (𝑟 |𝑅 | , 𝑟1)) is a shortcut of these paths by the triangle inequality, of length at most 2𝑂𝑃𝑇 (a path
is also a tree).

Therefore, the minimum spanning tree, which is smaller than this one, is of length at most 2𝑂𝑃𝑇 .

Illustration:

4

𝑠1

𝑠2

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑠1 → 𝑟1 → 𝑟2 → 𝑟1 → 𝑠1 → 𝑟3 → 𝑠2 → 𝑟4 → 𝑠2 → 𝑟5 → 𝑠2 → 𝑟3 → 𝑠1

𝑟1 → 𝑟2 → 𝑟3 → 𝑟4 → 𝑟5

the end of lecture 2 (9 Feb)

Proposition 2.1. The ratio 2 is tight for this algorithm because there are instances in which the ratio can be
arbitrarily close to 2:

𝑆 = {𝑣0} and 𝑅 = {𝑣1, . . . , 𝑣𝑛}. 𝑑 (𝑣0, 𝑣𝑖) = 1 for 𝑖 = 1, . . . , 𝑛 and 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 2 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The optimal
Steiner tree has 𝑣0 as the center and all required nodes connected to 𝑣0, so 𝑂𝑃𝑇 = 𝑛. However, the approx. algo.
output a path of 𝑅 in which each edge is of distance 2, so the total cost is 2(𝑛 − 1). Thus, the ratio is 2(𝑛 − 1)/𝑛.

For any desired ratio less than 2, we can find sufficiently large 𝑛 such that the actual ratio is greater than it.
So 2 is tight.

The best approx. ratio known so far is 1.39.
And the hardness result is that, unless 𝑃 = 𝑁𝑃 , it is impossible to achieve approx. ratio better than 96/95.

That means that, if we can achieve a ratio smaller than that, it implies 𝑃 = 𝑁𝑃 . That is, finding a ratio better than
that is a NP-hard problem.

The goal is either to find smaller approx. ratio, or to find larger lower bound of the ratio.

2.2 General Steiner Tree Problem

Theorem 2.2. (There is a common reduction from the general problem to the metric one such that,) For every
𝑐 ≥ 1, if there is a polynomial time 𝑐-approximate algorithm for Metric Steiner Tree, then there is a polynomial time
𝑐-approximate algorithm for General Steiner Tree.

The details are stated in the proof.

Proof 2.2. The reduction basically constructs a new graph that satisfies the triangle inequality: Let the original
graph be 𝐺 , we construct 𝐺 ′ with a distance function 𝑑 ′ in the following way: For any two points 𝑥 and 𝑦 in 𝐺 ,
let 𝑑 ′ (𝑥,𝑦) be the length of the shortest path from 𝑥 to 𝑦 in𝐺 . Then 𝑑 ′ satisfies the triangle inequality: For every
three points 𝑥,𝑦, 𝑧, the shorest path from 𝑥 to 𝑦 plus the one from 𝑦 to 𝑧 is some path from 𝑥 to 𝑧, so its length
cannot be shortest than the length of the shortest path from 𝑥 to 𝑧, i.e., 𝑑 ′ (𝑥, 𝑧) ≤ 𝑑 ′ (𝑥,𝑦) + 𝑑 ′ (𝑦, 𝑧).

Then, we run the 𝑐-approximate algo. on𝐺 ′. Let the cost of the output solution be 𝑆𝑂𝐿(𝐺 ′), then 𝑆𝑂𝐿(𝐺 ′) ≤
𝑐 ·𝑂𝑃𝑇 (𝐺 ′).

Next, we convert the solution to a solution to the original problem. We replace each edge (𝑥,𝑦) in the solution
by the shortest path from 𝑥 to 𝑦 in 𝐺 . At this stage, the total cost does not change. However, the converted
solution may have duplicate edges and cycles, so we simply remove the duplicate edges, and take a MST of
the remaining graph as the final solution. Clearly, the MST is a valid Steiner tree. It only removes edges, so
𝑀𝑆𝑇 ≤ 𝑆𝑂𝐿(𝐺 ′) ≤ 𝑐 ·𝑂𝑃𝑇 (𝐺 ′).

5

3 Metric Traveling Salesman Problem

Definition 3.1 (Traveling salesman problem (TSP)). Find the shortest closed path that visit each node exactly
once.

Definition 3.2 (Metric Traveling Salesman Problem (TSP)). Given a complete weighted graph𝐺 with non-
negative weights satisfying the triangle inequality, find the cheapest cycle that reaches all points exactly once.

3.1 2-approximate Algorithm

Theorem 3.1 (2-approximate algorithm). The following approximation algorithm is a 2-approximation:

1. Construct a MST

2. Find a twice-around tour of the MST. (i.e. an Eulerian tour extracted from the doubled-edge graph)

3. Shortcut a TSP tour from the twice-around tour. (i.e., directly jump to the next unseen point, such edge exists
because of the complete graph).

Proof 3.1. By dropping an edge on an optimal TSP tour, we get a spanning path of the graph. So its cost must
be ≥ the MST. Therefore, 𝑂𝑃𝑇 ≥ 𝑀𝑆𝑇 .

Similar to before, the shortcut TSP tour has cost 𝑆𝑂𝐿 ≤ 2 ·𝑀𝑆𝑇 ≤ 2 ·𝑂𝑃𝑇 .

Remark 4 (General idea). The general steps of constructing an approximate ratio are the following:

1. Find a lower bound of 𝑂𝑃𝑇 . (In this case,𝑀𝑆𝑇 ≤ 𝑂𝑃𝑇)

2. Use the lower bound to extract a solution. In this process, the cost of the solution becomes worse than the
lower bound, but they have some relationship. (In this case, 𝑆𝑂𝐿 ≤ 2 ·𝑀𝑆𝑇)

3. Finally, derive the relationship between 𝑂𝑃𝑇 and 𝑆𝑂𝐿 with the lower bound as the medium.

3.2 ★ 3/2-approximate Algorithm

Remark 5 (Motivation). We want to find a Eulerian tour. And the Eulerian tour exists iff all the vertices have
even degrees. Since some nodes are already of even degree, we could consider adding fewer edges.

Also notice that the number of vertices of odd degree must be even. So we could divide these odd vertices
into pairs and add an edge between each pair of vertices.

the end of lecture 3 (14 Feb)

Definition 3.3 (Matching). Given a graph 𝐺 = (𝑉 , 𝐸), a subset 𝑀 ⊆ 𝐸 is a matching if no pair of edges in 𝑀
share common endpoints.

A matching is called perfect if it covers all nodes in 𝑉 .
A min-weight perfect matching is a perfect matching that achieve the minimum possible total weight.

Fact 3.1. Given a complete graph𝐺 with an even number of nodes, it is possible to compute a min-weight perfect
matching in polynomial time.

Theorem 3.2. The following is a polynomial 3/2-approximate algorithm:

1. Construct a MST

2. Let 𝑆 be the set of nodes of even degree in the MST, and 𝐺𝑆 be the subgraph of 𝐺 induced by 𝑆 . Find the
min-weight perfect matching𝑀 in 𝐺𝑆 .

6

3. Find an Eulerian tour in the union of the MST and𝑀 .

4. Shortcut the Eulerian tour to form a TSP tour.

The theorem follows immediately if the following lemma is true. (Note that we do not need to double the
edges in𝑀𝑆𝑇 ∪𝑀 , so the TSP tour ≤ the Eulerian tour = 𝑀𝑆𝑇 +𝑀)

Lemma 3.1. The weight of the min-weight perfect matching in 𝐺𝑆 is no greater than 1
2𝑂𝑃𝑇 , where 𝑂𝑃𝑇 is the

weight of the optimal TSP in 𝐺 .

Proof 3.2. Consider the optimal TSP tour. We shortcut it (vertex set 𝑉) to form a tour (cycle) of 𝑆 (⊆ 𝑉). The
cycle has weight 𝐶 ≤ 𝑂𝑃𝑇 .

Then we partition this cycle into two perfect matching of 𝑆 by putting every two adjacent edges to different
matchings. The sum of the weights of these two matchings is equal to𝐶 , so the smaller weight among themmust
be ≤ 1

2𝐶 ≤
1
2𝑂𝑃𝑇 .

The min-weight perfect matching is smaller than or equal to this matching, so its weight is also ≤ 1
2𝑂𝑃𝑇 .

4 Linear Programming

The term “programming” means “planning”.

Definition 4.1 (Linear Program). A linear program comprises

• A linear function of serveral vairables 𝑥1, 𝑥2, . . . , 𝑥𝑛 we want to optimize (maximize / minimize), called the
objective function.

• A number of linear inequalities of these variables, called constraints. The inequal signs can be either ≥ or
≤, but one can easily negative the coefficients to flip and unify the sign.

• The nonnegativity constraint, i.e. all variables should be nonnegative.

The goal is to optimize the objective function under these constraints.
Formally, a LP can be written as

maximize
𝑛∑︁
𝑗=1

𝑐 𝑗𝑥 𝑗

subject to
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, . . . ,𝑚

𝑥 𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛

Remark 6. For minimization versions, we only need to negative the objective function and constraints accord-
ingly.

Definition 4.2 (Feasible region). The region satisfying all the constraints.

7

In the 2-dimensional case, the constaints are half plains, and the objective function at some fixed value is a
straight line.

Definition 4.3 (Convex region). A region such that for any two points in it the line segment connecting them
is also (entirely) in the region.

It can be easily shown that the intersection of two convex region is also a convex region.
Since the a (high-dimensional) half plain is a convex region, the feasible region which is the intersection of

all constraints is also a convex region.
Remark 7 (Motivation of using LP). The Integer Linear Programming (ILP) (with an additional constraint that all
𝑥𝑖 are integers) is NP-complete. So any NP problem can be reduced to an ILP problem.

For a maximization (minimization) problem, we want a good approximation, i.e., a tight upper bound (lower
bound) of maximal (minimal) solution. So we can first convert it to an ILP problem, and then relax the integer
constraint. The maximal (minimal) solution or the upper bound (lower bound) of the resulting LP problem will
certainly be an upper bound (lower bound) of the original ILP problem (can achieve better results due to less
constraints).

4.1 Matrix Representation

Definition 4.4 (Matrix representation of LP). Let

𝒙 =
©«
𝑥1
...

𝑥𝑛

ª®®¬ , 𝒄 =
©«
𝑐1
...

𝑐𝑛

ª®®¬ , 𝑨𝑖, 𝑗 = 𝑎𝑖 𝑗 , 𝒃 =
©«
𝑏1
...

𝑏𝑚

ª®®¬
be the column vector of all variables, the column vector of coefficients of the objective function, the𝑛×𝑚matrix of
coefficients of the left-hand sides of the constraints, and the column vector of right-hand sides of the constraints,
respectively. Then the LP can be written as

maximize 𝒄⊺𝒙

subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0

where ≤, ≥ is the entry-wise ≤, ≥.

Definition 4.5 (More terminologies).

• Any 𝒙 ∈ R𝑛 satisfying all the constraints of LP is called a feasible solution.

• Any 𝒙∗ ∈ R𝑛 that achieve the maximum/minimum possible value of 𝒄𝑇𝒙 among all feasible solutions is
called an optimal solution.

• An LP is infeasible if its feasible region is ∅.

• An LP is unbounded if the objective function can attain arbitrary large (small) value for maximization
(minimizaation) problem.

the end of lecture 4 (16 Feb)
Geometric explanation of 𝒄⊺𝒙 : All 𝒙 satisfying 𝒄⊺𝒙 = 𝒄 · 𝒙 = 𝑘 for some fixed value 𝑘 are on a line/hyper

plane orthogonal to 𝒄 .

8

4.2 LP Duality

Definition 4.6 (Dual LP). Given a primal LP (assume maximization problem, similar for minimization), its
dual LP is obtained as follows:

• Find a suitable multiplier 𝑦𝑖 for each inequality 𝑖 such that

𝑦𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚,
𝑚∑︁
𝑖=1

𝑦𝑖 · 𝑎𝑖 𝑗 ≥ 𝑐 𝑗 , 𝑗 = 1, . . . , 𝑛

, i.e., the coefficients in the linear combination are all greater than the objective function.

• Then the objective function

𝑛∑︁
𝑗

𝑐 𝑗𝑥 𝑗 ≤
𝑛∑︁
𝑗=1

(
𝑚∑︁
𝑖=1

𝑦𝑖𝑎𝑖 𝑗

)
𝑥 𝑗 =

𝑚∑︁
𝑖=1

𝑦𝑖

𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 ≤
𝑚∑︁
𝑖=1

𝑦𝑖𝑏𝑖 (1)

The two ≤ are due to the previous two conditions, respectively.
Thus,

∑𝑚
𝑖=1 𝑦𝑖𝑏𝑖 is a valid upper bound of the objective function. We want this to be small. value.

• Realize that finding the solution of 𝑦𝑖 is another LP, called the dual LP:

minimize
𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖

subject to
𝑚∑︁
𝑖=1

𝑎𝑖 𝑗𝑦𝑖 ≥ 𝑐 𝑗 , 𝑗 = 1, . . . , 𝑛

𝑦𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚

Conversely, the primal LP is also the dual of the dual LP.

Theorem4.1 (WeakDuality Theorem). If 𝑥𝑖 and𝑦𝑖 are feasible solutions for the primal and dual LP, respectively,
then

𝑚∑︁
𝑖=1

𝑐 𝑗𝑥𝑖 ≤
𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖

Proof 4.1. Suppose 𝑦𝑖 is a solution to the dual LP, then we have, for whatever values of 𝑥 𝑗 , equation 1 holds.
Suppose 𝑥 𝑗 is a solution to the primal LP, then we have, for whatever values of 𝑦𝑖 , the following equation

holds
𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖 ≥
𝑚∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗

)
𝑦𝑖 =

𝑛∑︁
𝑗=1

𝑥 𝑗

𝑚∑︁
𝑖=1

𝑎𝑖 𝑗𝑦𝑖 ≥
𝑚∑︁
𝑖=1

𝑥𝑖𝑐 𝑗 (2)

By equation 1 and equation 2,
𝑚∑︁
𝑖=1

𝑐 𝑗𝑥𝑖 ≤
𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖

holds for any pair of solution 𝑥 𝑗 for the primal LP and solution 𝑦𝑖 for the dual LP.

Definition 4.7 (Dual LP (Matrix representation)). Given a primal LP

maximize 𝒄⊺𝒙

subject to 𝑨𝒙 ≤ 𝒃

𝒙 ≥ 0

9

, the dual LP is

minimize 𝒃⊺𝒚(𝒚⊺𝒃)
subject to 𝑨⊺𝒚 ≥ 𝒄 (𝒚⊺𝑨 ≥ 𝒄⊺)

𝒚 ≥ 0

Remark 8. Note that 𝒚⊺𝑨 is just the linear combination of the (LHS of) inequalities in the primal LP.
Theorem 4.2 (Weak Duality Theorem (Matrix version)). If 𝒙 and 𝒚 are feasible solutions for the primal and
dual LP, respectively, then

𝒄⊺𝒙 ≤ 𝒃⊺𝒚

Proof 4.2. By 𝑨𝒙 ≤ 𝒃 and 𝒚 ≥ 0, we have 𝒚⊺𝑨𝒙 ≤ 𝒚⊺𝒃 . By 𝒚⊺𝑨 ≥ 𝒄⊺ and 𝒙 ≥ 0, we have 𝒚⊺𝑨𝒙 ≥ 𝒄⊺𝒙 .
Therefore, 𝒄⊺𝒙 ≤ 𝒃⊺𝒚.
Corollary 4.1. If the primal LP is unbounded, then the dual LP is infeasible.
Theorem 4.3 (Strong Duality Theorem). If either the primal LP or the dual LP is feasible and bounded, then so
is the other and the optimal objective function value of both LPs are the same.

Proof 4.3 (In 2D case). We assume that the primal LP is feasible and bounded.
The solution 𝒙 that achieves the maximum value must be at some intersection vertex of two constraints. Let

us denote it by 𝒙∗, and the two constraints by 𝒂𝒊 · 𝒙 ≤ 𝑏𝑖 and 𝒂𝒋 · 𝒙 ≤ 𝑏 𝑗 , where 𝒂𝒊 and 𝒂𝒋are the 𝑖-th and 𝑗-th
rows of 𝑨 orthogonal to the constraint lines. These two are satisfied with equalities, i.e.,

𝒂𝒊 · 𝒙∗ = 𝑏𝑖 , 𝒂𝒋 · 𝒙∗ = 𝑏 𝑗

Since the primal LP is bounded, the two constraint lines must form a triangle with some line orthogonal to
𝒄 , so 𝜃𝑖 + 𝜃 𝑗 < 𝜋 . Therefore, 𝒄 lies in the corner of 𝒂𝒊 and 𝒂𝒋 , meaning that 𝒄 can be expressed as

𝒄 = 𝑦∗𝑖 𝒂𝒊 + 𝑦∗𝑗 𝒂𝒋, 𝑦∗𝑖 , 𝑦
∗
𝑗 ≥ 0

𝒄

𝒄

𝒂𝒊

𝒂𝒋

𝜃𝑖

𝜃 𝑗
𝜃 𝑗

𝜃𝑖

𝒙∗

As the notation 𝑦∗ indicates, 𝑦∗’s are the multipliers of the constraints of the primal LP, and hence 𝒚∗ is a
solution for the dual LP. More rigorously, we let 𝑦∗

𝑘
= 0 for 𝑘 ≠ 𝑖, 𝑗 and check that 𝑨⊺𝒚∗ = 𝒄 ≥ 𝒄 and 𝒚∗ ≥ 0. 𝒚∗

is indeed a feasible solution for the dual.
The objective function value of the dual is

𝒃⊺𝒚∗ = 𝑏𝑖𝑦
∗
𝑖 + 𝑏 𝑗𝑦∗𝑗

and the optimal value of the primal is

𝒄⊺𝒙∗ = 𝑦∗𝑖 𝒂𝒊 · 𝒙∗ + 𝑦∗𝑘𝒂𝒋 · 𝒙
∗ = 𝑏𝑖𝑦

∗
𝑖 + 𝑏 𝑗𝑦∗𝑗

They are equal. Therefore, by the weak duality theorem, their optimal values are the same.

10

Fact 4.1. Let 𝑛 be the number of constraints plus the number of variables, and 𝐿 be the number of input bits
(input numbers should be ∈ Q, where each can be represented by two integers. If they are ∈ R, that is too
complicated).

Then LP can be solved in time polynomial to 𝑛 and 𝐿.

5 MinimumWeighted Vertex Cover

Definition 5.1 (Some notations).

• Π: optimization problem (min or max).

• 𝐼 : instance of Π.

• 𝑂𝑃𝑇Π (𝐼): the objective function value of the optimal solution to instance 𝐼 , sometimes abbreviated to
𝑂𝑃𝑇 (𝐼) if Π is clear.

• 𝑂𝑃𝑇𝐼𝐿𝑃 (𝐼) = 𝑂𝑃𝑇Π (𝐼): the objective function value of the equivalent ILP.

• 𝑂𝑃𝑇𝐿𝑃 (𝐼): the objective function value of the relaxed LP, sometimes denoted by 𝑂𝑃𝑇𝑓 (𝐼) meaning “frac-
tional”.

Definition 5.2 (Minimum weighted vertex cover). Given an undirected graph 𝐺 = (𝑉 , 𝐸) with a positive
weight𝑤𝑣 associated with each vertex 𝑣 . The goal is to find a𝑉 ′ ⊆ 𝑉 that covers all the edges and minimizes the
total weight

∑
𝑣∈𝑉 ′ 𝑤𝑣 .

This is known to be a NP-hard problem.

Proposition 5.1. An equivalent ILP is

minimize
∑︁
𝑣∈𝑉

𝑤𝑣𝑥𝑣

subject to 𝑥𝑢 + 𝑥𝑣 ≥ 1,∀𝑒 = (𝑢, 𝑣) ∈ 𝐸
𝑥𝑣 ∈ {0, 1}, 𝑥𝑣 = 1 means 𝑣 ∈ 𝑉 ′

Then we want to relax this ILP to a LP to get a lower bound of the minimal solution. An obvious relaxation
is let 𝑥𝑣 ∈ [0, 1]. However, fractional value of 𝑥𝑣 does not make sense. We shall show that rounding 𝑥𝑣 in some
way can give a valid solution for the original problem. Before that, we propose a simpler relaxation:

Theorem 5.1 (A LP relaxation). The LP is the same as the ILP but the integrality constraint is relaxed to 0 ≤ 𝑥𝑣 ≤
1. It turns out that it can be further replaced by 𝑥𝑣 ≥ 0.

Proof 5.1. We prove that 𝑥𝑣 ≥ 0 is equivalent to 0 ≤ 𝑥𝑣 ≤ 1: If the optimal solution for the relaxed LP has some
𝑥𝑣 > 1, then changing it to 1

• will not break 𝑥𝑢 + 𝑥𝑣 ≥ 1, because 1 ≥ 1 and 𝑥𝑢 ≥ 0,

• and can reduce the objective function value because𝑤𝑣 > 0.

So by doing this we can obtain a better solution. Therefore, in the optimal solution every 𝑥𝑣 ≤ 1.

Theorem 5.2 (A deterministic rounding). The following rounding method leads to a 2-approximation: Let 𝑥∗𝑣
be the optimal solution for the LP. Round 𝑥∗𝑣 ≥ 1

2 to 1 and 𝑥
∗
𝑣 < 1

2 to 0.
In other words, we take 𝑆 = {𝑣 ∈ 𝑉 : 𝑥∗𝑣 ≥ 1

2 } as the output.

11

Proof 5.2. Validness: Every edge has at least one endpoint with corresponding 𝑥∗ value ≥ 1
2 , so after rounding

this endpoint becomes 1 and meet the constraint.
Approximation ratio: Let the rounded solution be 𝑥 ′𝑣 and objective function value of the rounded solution be

𝑆𝑂𝐿. Since 𝑂𝑃𝑇𝐿𝑃 ≤ 𝑂𝑃𝑇𝑉𝐶 , it suffices to show 𝑆𝑂𝐿 ≤ 2𝑂𝑃𝑇𝐿𝑃 : If 𝑥∗𝑣 ≥ 1
2 , then 𝑥

′
𝑣 = 1 ≤ 2𝑥∗𝑣 . If 𝑥∗𝑣 < 1

2 , then
𝑥 ′𝑣 = 0 ≤ 2𝑥∗𝑣 . So

𝑆𝑂𝐿 =
∑︁
𝑣∈𝑉

𝑥 ′𝑣 ≤
∑︁
𝑣∈𝑉

2𝑥∗𝑣 = 2
∑︁
𝑣∈𝑉

𝑥∗𝑣 = 2 ·𝑂𝑃𝑇𝐿𝑃

the end of lecture 5 (23 Feb)

Definition 5.3 (Integrality gap). For a minimization problem Π, the integrality gap for a LP relaxation for Π is

max
𝐼

𝑂𝑃𝑇Π (𝐼)
𝑂𝑃𝑇𝐿𝑃 (𝐼)

0 𝑂𝑃𝑇𝐿𝑃 𝑂𝑃𝑇𝐼𝐿𝑃 𝑆𝑂𝐿

For a maximization problem, it is
max
𝐼

𝑂𝑃𝑇𝐿𝑃 (𝐼)
𝑂𝑃𝑇Π (𝐼)

Remark 9.

• To lower bound the integrality gap, we just need to find an instance 𝐼 .

• To upper bound it, we investigate the (worst-case) approximation ratio. Because for any instance 𝐼 , we
always have 𝑆𝑂𝐿 (𝐼)

𝑂𝑃𝑇𝐿𝑃 (𝐼) ≥
𝑂𝑃𝑇Π (𝐼)
𝑂𝑃𝑇𝐿𝑃 (𝐼) . And the approximation ratio is just the worst 𝑆𝑂𝐿 (𝐼)

𝑂𝑃𝑇𝐿𝑃 (𝐼) .

Lower bound: when the input is a complete graph𝐾𝑛 . Then the optimal fractional solution is 𝑥𝑣 = 1
2 for each

vertex, while the optimal integral solution is picking all but one vertex. The rounded solution will be picking
every vertex. So

𝑂𝑃𝑇𝑉𝐶 (𝐾𝑛)
𝑂𝑃𝑇𝐿𝑃 (𝐾𝑛)

=
2(𝑛 − 1)

𝑛
= 2 − 2

𝑛

(Tight) upper bound: We have shown that 𝑆𝑂𝐿 (𝐼)
𝑂𝑃𝑇𝐼𝐿𝑃 (𝐼) ≤ 2 for any 𝐼 . Next, we find an instance with the ratio

exactly = 2: When the input is a complete bipartite graph 𝐾𝑛,𝑛 , the optimal fractional solution is still 𝑥𝑣 = 1
2 for

each vertex, while the integral solution is picking one side of vertices. The rounded solution is still picking all
the vertices. So

𝑆𝑂𝐿(𝐾𝑛,𝑛)
𝑂𝑃𝑇𝑉𝐶 (𝐾𝑛,𝑛)

=
2𝑛
𝑛

= 2

Thus, the approximation ratio is tight. In addition, the ratio 2 is an tight upper bound of the integrality gap.
In conclusion, the gap is in [2 − 2

𝑛
, 2] for any 𝑛 ∈ N.

Best approximation ratio for VC: 2 − Θ(1/
√︁
log𝑛)

Open question: Find a approximation ratio of 2 − 𝛿 for some fixed 𝛿 > 0, or prove that it is NP-hard.
Hardness result: Unless 𝑃 = 𝑁𝑃 , there is no approximation better than 1.36.
the end of lecture 6 (28 Feb)

12

5.1 The dual of the LP relaxation

By the Weak Duality theorem, the objective function value of any feasible solution to the dual LP is a lower
bound on the optimal value of the primal LP.
Proposition 5.2. The dual LP of the primal LP is

maximize
∑︁
𝑒∈𝐸

𝑦𝑒

subject to
∑︁

𝑒 :𝑒 is indicent on 𝑣

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸

Using natural language, the problem can be described as follows: Assign a nonnegative charge to each edge
such that the weight of every vertex is enough to pay for the sum of charges of edges that are incident on the
vertex. Find the maximal total charge over all edges.
Theorem 5.3 (Primal-dual algorithm). Will construct a feasible solution𝒚 to the dual LP and a feasible solution
𝒙 to the ILP (i.e., integral 𝒙) in parallel. We call a vertex 𝑣 tight if the the sum of charges is equal to its weight.

The algorithm is:

1. Initiate 𝒙,𝒚 ← 0.

2. For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 (in any order)

(a) Raise the charge 𝑦𝑒 as much as possible until at least one of its endpoint is tight.
(b) Choose all of its tight endpoints to the vertex cover, i.e., if 𝑢 is tight then set 𝑥𝑢 ← 1, and if 𝑣 is tight then

set 𝑥𝑣 ← 1.

3. Output the 𝒙 and𝒚 as the solutions to the ILP and dual LP, respectively, and 𝑆 = {𝑣 |𝑥𝑣 = 1} as the vertex cover.

𝑆 is a 2-approximation.

We can show the correctness and approximation ratio using the Weak Duality theorem or from scratch.
Proof 5.3 (With theWeak Duality theorem). Validness (every edge is covered): We raise the charge of every
edge until it has an endpoints selected into the VC. Thus, every edge is covered.

Approximation ratio: 𝑆 and 𝒚 are the VC and the solution to the dual outputed by the above algorithm,
respectively.

𝑤 (𝑆) =
∑︁
𝑣∈𝑆

𝑤𝑣 =
∑︁
𝑣∈𝑆

∑︁
𝑒 incident on 𝑣

𝑦𝑒

=
∑︁
𝑒∈𝐸

𝑦𝑒 × (# its endpoints that are tight)

≤ 2
∑︁
𝑒∈𝐸

𝑦𝑒 ≤ 2𝑂𝑃𝑇𝑉𝐶 (the second ineq. by WD)

Proof 5.4 (Without the Weak Duality theorem). Validness: the same.
Approximation ratio: Let 𝐶 be an arbitrary VC, and 𝒚 be the solution given by the above algorithm.
As proved before,𝑤 (𝑆) ≤ 2

∑
𝑒∈𝐸 𝑦𝑒 . It suffices to show

∑
𝑒∈𝐸 𝑦𝑒 ≤ 𝑤 (𝐶∗) for an optimal VC 𝐶∗.

𝑤 (𝐶∗) =
∑︁
𝑣∈𝐶∗

𝑤𝑣 ≥
∑︁
𝑣∈𝐶∗

∑︁
𝑒 incident on 𝑣

𝑦𝑒 (by the constraint)

=
∑︁
𝑒∈𝐸

𝑦𝑒 × (# its endpoints that are in 𝐶∗)

≥
∑︁
𝑒∈𝐸

𝑦𝑒 (𝐶 covers each edge at least once)

13

the end of lecture 7 (02 Mar)

5.2 Unweighted

Definition 5.4 (Maximum matching and maximal matching). A maximum matching is a matching with
the largest possible number of edges. A maximal matching, however, is a matching that cannot include any more
edges. A maximal matching does not necessarily contain the largest number of edges.

Remark 10. Finding a maximal matching can be done in polynomial time: Incrementally add (any) edges until
no more edges can be added.

Theorem 5.4. A 2-approximate algorithm for the minimum unweighted vertex cover problem is

1. Find a maximal matching.

2. Take all endpoints of the matching as the vertex cover.

Proof 5.5.

Validness: If some edge is not covered, then neither of its endpoints is selected into the VC. This is impossible.
By direct combinatorial argument: Any VCmust cover the maximal matching𝑀 . Since edges in𝑀 do not

share common endpoints, any VC must use at least |𝑀 | vertices. Therefore the output has cost 2|𝑀 | ≤ 2 ·𝑂𝑃𝑇 .
By the weak duality theorem: A feasible solution to the dual is setting the charge of every edge in 𝑀 to

be 1, resulting in the total cost |𝑀 |. By the WDT, |𝑀 | is a lower bound on the cost the optimal solution to the
primal (VC).

6 Set Cover Problem

Definition 6.1 (Set cover). Given a finite universal set𝑈 and a collection of subsets of𝑈 : 𝑆1, . . . , 𝑆𝑛 such that
∪𝑛𝑖=1𝑆𝑖 = 𝑈 , each associated with weight𝑤𝑖 .

A set cover is a collection of these sets whose union is 𝑈 . The goal is to find a SC of the smallest cost. I.e.,
find a 𝐼 ⊆ {1, 2, . . . , 𝑛} such that ∪𝑖∈𝐼𝑆𝑖 = 𝑈 and

∑
𝑖∈𝐼 𝑤𝑖 is minimized.

Proposition 6.1. THe VC problem can be reduced to a SC problem: Take 𝑈 as the set of all the edges 𝐸, and 𝑆𝑖
as the set of edges incident to the vertex 𝑖 .

Proposition 6.2. The equivalent ILP to the SC problem is

minimize
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

subject to
∑︁
𝑖:𝑢∈𝑆𝑖

𝑥𝑖 ≥ 1, ∀𝑢 ∈ 𝑈

𝑥𝑖 ∈ {0, 1}, 𝑖 = 1, 2, . . . , 𝑛

6.1 A LP Relaxation and A Randomized Approximation

Proposition 6.3. A LP relaxation is changing 𝑥𝑖 ∈ {0, 1} to 𝑥𝑖 ≥ 0. The proof is exactly the same as for the VC
problem. In addition, 𝑂𝑃𝑇𝐿𝑃 ≤ 𝑂𝑃𝑇𝑆𝐶 .

Remark 11. If we attempt to apply the deterministic rounding method for the VC, i.e., threshold 1
2 , then we will

find it does not give an valid SC in general. For instance, some 𝑖 is included in all the sets, then the corresponding
contraint will be 𝑥1 + · · · + 𝑥𝑛 ≥ 1. In the optimal solution, 𝑥𝑖 can be as small as 1

𝑛
, so all of them will be rounded

down to zero.

14

Theorem 6.1 (A randomized rounding). Let 𝑥∗𝑖 be the optimal solution for the LP-relaxation. Pick 𝑆𝑖 to the SC
with probability 𝑥∗𝑖 .

Let𝐶 be the solution. Then the expected cost of𝐶 is at most𝑂𝑃𝑇𝑆𝐶 , and each element is covered with probability
at least 1 − 1

𝑒
.

Proof 6.1.

Expected cost:

E[𝑐𝑜𝑠𝑡 (𝐶)] =
𝑛∑︁
𝑖=1

𝑤𝑖 · P(𝑆𝑖 is selected) (by linearity)

=

𝑛∑︁
𝑖=1

𝑤𝑖𝑥
∗
𝑖 ≤ 𝑂𝑃𝑇𝑆𝐶

The probability that 𝑢 ∈ 𝑈 is covered:
It is easier to compute the probability that 𝑢 is NOT covered: Assume 𝑢 is covered by 𝑘 sets, 𝑆𝑖1 , . . . , 𝑆𝑖𝑘 . Then

P(𝑢 ∉ 𝐶) =
𝑘∏
𝑖=1

P(𝑆𝑖 is not selected)

= (1 − 𝑥∗𝑖1) · · · (1 − 𝑥
∗
𝑖𝑘
)

≤
(
1 − 1

𝑘

)𝑘
(𝑥𝑖1 + · · · + 𝑥𝑖𝑘 ≥ 1)

≤ 1
𝑒

Alternatively, by 1 − 𝑥 ≤ 𝑒−𝑥 , we have (1 − 𝑥∗𝑖1) · · · (1 − 𝑥
∗
𝑖𝑘
) ≤ 𝑒−𝑥

∗
𝑖1
−···−𝑥∗𝑖𝑘 ≤ 𝑒−1.

So the probability that 𝑢 IS covered is ≥ 1 − 1
𝑒
.

Definition 6.2 (With high probability). We say something is true with high probability (w.h.p.) if the proba-
bility is

≥ 1 − 1
poly(input)

We cannot say 𝐶 is a valid SC w.h.p.: Though not exactly following the definition, we can see

E(# elements covered) ≥ |𝑈 | ·
(
1 − 1

𝑒

)
is not a good bound, because is only shows that a constant fraction of elements are covered.

Theorem 6.2 (Probabilistic approximation and validness, deterministic poly-time). Given the optimal
solution for the LP-relaxation 𝑥∗𝑖 , the following algorithm gives a valid SC w.h.p., whose cost is expected to be a
(𝑐 ln |𝑈 |)-approximation, and runs in deterministic polynomial-time:

1. Independently pick (𝑐 ln |𝑈 |) collections (𝐶𝑖 ’s) using the above randomized rounding method.

2. Take the union of them to form the solution 𝐶′.

Proof 6.2. To make the proof more extensible, we denote the # independently picked collections by 𝑡 (t for
times).

Probability that 𝐶′ is valid: Since it takes the union,

P(𝑢 ∉ 𝐶′) = P(𝑢 ∉ 𝐶𝑖∀𝑖) =
∏
𝑖

P(𝑢 ∉ 𝐶𝑖) ≤
(
1
𝑒

)𝑡
15

When 𝑡 = 𝑐 ln |𝑈 |, P(𝑢 ∉ 𝐶′) = 1
|𝑈 |𝑐 .

Then

P(𝐶′ is not valid) = P(𝑢1 ∉ 𝐶′ ∨ · · · ∨ 𝑢 |𝑈 | ∉ 𝐶′)

≤
|𝑈 |∑︁
𝑖=1

P(𝑢𝑖 ∉ 𝐶′) (union bound)

≤ 1
𝑒𝑡
· |𝑈 |

When 𝑡 = 𝑐 ln |𝑈 |, P(𝐶′ is not valid) ≤ 1
|𝑈 |𝑐−1 . We can say 𝐶′ is valid w.h.p.

Expected cost:
E[𝑐𝑜𝑠𝑡 (𝐶′)] ≤

∑︁
E[𝑐𝑜𝑠𝑡 (𝐶)] ≤ 𝑡 ·𝑂𝑃𝑇

when 𝑡 = 𝑐 ln |𝑈 |, it is ≤ (𝑐 ln |𝑈 |)𝑂𝑃𝑇 .
Running time: polynomial.

the end of lecture 8 (07 Mar)
Theorem 6.3 (Markov’s inequality). If 𝑋 is a nonnegative r.v. and 𝑡 > 0, then

P(𝑋 ≥ 𝑡) ≤ E𝑋
𝑡

Proof 6.3. E𝑋 ≥ 𝑡 P(𝑋 ≥ 𝑡) + 0P(𝑋 < 𝑡)
Theorem 6.4 (Guaranteed approximation and validness, expected poly-time). Given the optimal solution
for the LP-relaxation 𝑥∗𝑖 , in expected polynomial time, the following algorithm is guaranteed to give a valid𝑂 (ln |𝑈 |)-
approximation of the cost of the optimal SC:

1. Repeatedly

(a) Run the algorithm in Thm 6.2.
(b) Check the cost and validness

until the solution is valid and the cost is 𝑂 (ln |𝑈 |) ·𝑂𝑃𝑇𝐿𝑃 .

2. Output the solution.

Proof 6.4. Here we show for 𝑂 (ln |𝑈 |) = 4 · 𝑐 ln |𝑈 |, where the constant 𝑐 is from Thm 6.2.
Running time:
Let 𝐶′ be the solution derived in each iteration. We first get some constant bounds for the two “bad things”:

• Validness: P(𝐶′ is not valid) ≤ 1
|𝑈 |𝑐−1 ≤

1
4 when |𝑈 | ≥ 2 and 𝑐 > 3.

• Cost too large: By the Markov’s inequality, P[𝑐𝑜𝑠𝑡 (𝐶′) ≥ 4 · 𝑐 ln |𝑈 |𝑂𝑃𝑇𝐿𝑃] ≤ E𝑐𝑜𝑠𝑡 (𝐶′)
4·𝑐 ln |𝑈 |𝑂𝑃𝑇𝐿𝑃

= 1
4 .

Therefore, the probability that either of them happens is P[cost too high ∨ SC not valid] ≤ 1
2 (by the union

bound). Then the probability that both of them pass the check is P(terminate) ≥ 1
2 . The # iterations follow the

Geometric distribution, so
E(# iters) = 1

P(terminate) ≤ 2

Since each iteration (including the checking) can be done polynomial, the overall running time is expected
to by polynomial.

Approximation ratio: guaranteed to be 𝑡 . (In this case, 𝑡 = 4 · 𝑐 ln |𝑈 |).

Harndess result: If for some constant 𝜖 > 0, there is a polynomial-time (1 − 𝜖) ln |𝑈 | approximation, then
𝑃 = 𝑁𝑃 .

16

6.2 ★ The Dual of the Relaxation and A Greedy Algorithm

Proposition 6.4. The dual of the (weighted SC) LP relaxation is

maximize
∑︁
𝑢∈𝑈

𝑦𝑢

subject to
∑︁

𝑢:𝑢∈𝑆𝑖
𝑦𝑢 ≤ 𝑤𝑖 , 𝑖 = 1, . . . , 𝑛

𝑦𝑢 ≥ 0, ∀𝑢 ∈ 𝑈

By analogy to the VC problem, we interpret 𝑦𝑢 as the charge of the element 𝑢.
Remark 12 (Motivation). We hope the set we choose to cost less and cover more. This reminds us to choose
according to the ratio of # elements covered by the cost.

Theorem 6.5 (A Greedy Algorithm). The following algorithm gives a 𝑂 (ln |𝑈 |) approximation:

1. 𝐼 ← ∅

2. While there is some element that has not been covered

(a) Let 𝐷 be the set of uncovered elements.

(b) For every set 𝑆𝑖 , let the effectiveness 𝑒𝑖 =
|𝐷∩𝑆𝑖 |
𝑤𝑖

.

(c) Let 𝑆𝑖∗ be a set with the highest effectiveness.

(d) Add 𝑖∗ to the index set 𝐼 .

3. Return 𝐼 .

To prepare for the proof, we first define some notations:

• Let 𝑢1, . . . , 𝑢𝑚 be an enumeration of the elements in the order in which they are covered by the algorithm.
(the order of elements covered at the same time does not matter)

• Let 𝑐 𝑗 be the effitiveness of the set that was picked at the step in which the algorithm covered 𝑢 𝑗 for the
first time. 𝑐 𝑗 is the largest among all 𝑒𝑖 at that stage.

• The reciprocal 1
𝑒𝑖

=
𝑤𝑖

|𝐷∩𝑆𝑖 | represents the average cost to cover an element ∈ 𝐷 ∩ 𝑆𝑖 ⊆ 𝐷 .

Proposition 6.5. 𝑂𝑃𝑇𝑆𝐶 ≥ 𝑚− 𝑗+1
𝑐 𝑗

,∀𝑗 ∈ {1, 2, . . . ,𝑚}

Proof 6.5 (Direct, 1).

• 1
𝑐 𝑗

is the smallest to cover any uncovered element in 𝐷 .

The optimal solution covers 𝐷 𝑗 , so it has cost at least |𝐷 𝑗 | · 1
𝑐 𝑗
≤ 𝑚− 𝑗+1

𝑐 𝑗
.

Proof 6.6 (Direct, 2).

• Let𝐷 𝑗 be the set of uncovered elements just before the step inwhich𝑢 𝑗 is covered. Note that |𝐷 𝑗 | ≥ 𝑚− 𝑗+1.

𝑐 𝑗 is the largest # elements to be covered per unit of cost. The optimal solution covers 𝐷 𝑗 . In the best case, every
unit 𝑂𝑃𝑇𝑆𝐶 can cover 𝑐 𝑗 elements, so 𝑂𝑃𝑇𝑆𝐶 · 𝑐 𝑗 ≥ |𝐷 𝑗 | ≥ 𝑚 − 𝑗 + 1.

Proof 6.7 (By the weak duality theorem, 3).

17

• Every set 𝑆𝑖 of weight𝑤𝑖 cover at most 𝑐 𝑗 ·𝑤𝑖 elements.

Assign𝑦𝑢1 , . . . , 𝑦𝑢 𝑗−1 = 0, and𝑦𝑢 𝑗
, . . . , 𝑦𝑢𝑚 = 1

𝑐 𝑗
. Check that for every set 𝑆𝑖 ,

∑
𝑦𝑢 = 1

𝑐 𝑗
· |𝑆𝑖 ∩𝐷 𝑗 | ≤ 1

𝑐 𝑗
· (𝑐 𝑗𝑤𝑖) = 𝑤𝑖 .

The objective function value is |𝐷 𝑗 | · 1
𝑐 𝑗
≥ 𝑚− 𝑗+1

𝑐 𝑗
. By the weak duality theorem, this is a lower bound of

𝑂𝑃𝑇𝑆𝐶 .

Proof 6.8 (of Thm 6.5). Let 𝐴𝑃𝑋 be the cost of the greedy solution. By the proposition above,

𝐴𝑃𝑋 =

𝑚∑︁
𝑗=1

1
𝑐 𝑗
≤

𝑚∑︁
𝑗=1

𝑂𝑃𝑇𝑆𝐶

𝑚 − 𝑗 + 1

= 𝑂𝑃𝑇𝑆𝐶

𝑚∑︁
𝑗=1

1
𝑗
= 𝑂𝑃𝑇𝑆𝐶 [ln𝑚 + 𝑜 (1)]

the end of lecture 9 (09 Mar)

7 Network flow

7.1 Definition

Definition 7.1 (Maximum flow). A flow network is a directed graph𝐺 = (𝑉 , 𝐸) with 2 special vertices source
𝑠 and sink 𝑡 , in which each edge 𝑒 is associated with a capacity 𝑐 (𝑒) ≥ 0.

A flow 𝑓 is an assignment of values to edges such that the following constraints are satisfied

• Capacity constraint: ∀𝑒 ∈ 𝐸, 𝑓 (𝑒) ≤ 𝑐 (𝑒)

• Flow conservation: ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡},∑𝑢∈𝑉 𝑓 (𝑢, 𝑣) =
∑

𝑢∈𝑉 𝑓 (𝑣,𝑢). There is no edges into 𝑠 and no edges
leaving 𝑡 .

The flow value of 𝑓 , denoted by |𝑓 |, is defined as the total flow out of the source∑︁
𝑣∈𝑉

𝑓 (𝑠, 𝑣)

The goal is to find a flow of maximum flow value from 𝑠 to 𝑡 .

Definition 7.2 ((𝑠-𝑡) Cut). A partition (𝐴,𝑉 −𝐴) of the vertex set into two groups, such that 𝑠 ∈ 𝐴 and 𝑡 ∈ 𝑉 −𝐴.
We may simply refer to this cut as cut 𝐴.

The capacity of a cut, denoted by 𝑐 (𝐴), is 𝑐 (𝐴) = ∑
𝑢∈𝐴,𝑣∉𝐴 𝑐 (𝑢, 𝑣).

Lemma 7.1. Any cut gives an upper bound on any flow value. That is, |𝑓 | ≤ 𝑐 (𝐴) for any 𝑓 and 𝐴.

Definition 7.3 (Net flow out of cut). Given a flow 𝑓 and a cut 𝐴, the net flow out of 𝐴 is defined as the total
flow out of 𝐴 minus the total flow into 𝐴. That is,

𝑓 (𝐴) :=
∑︁

𝑎∈𝐴,𝑏∉𝐴
𝑓 (𝑎, 𝑏) −

∑︁
𝑎∈𝐴,𝑏∉𝐴

𝑓 (𝑏, 𝑎)

Lemma 7.2. Consider any flow 𝑓 and any cut 𝐴, |𝑓 | = 𝑓 (𝐴).

Proof 7.1 (of Lemma 7.2). 𝑓 (𝐴) only involves flows across𝐴 and𝑉 −𝐴. To make use of the flow conservation,
we consider completing all the flow out of and into nodes in 𝐴.

18

Since flows within 𝐴 are cancelled out,∑︁
𝑎∈𝐴

(∑︁
𝑏∈𝑉

𝑓 (𝑎, 𝑏) −
∑︁
𝑏∈𝑉

𝑓 (𝑏, 𝑎)
)
= 𝑓 (𝐴)

Since flow are conserved at all nodes ∈ 𝐴 except 𝑠 ,∑︁
𝑎∈𝐴

(∑︁
𝑏∈𝑉

𝑓 (𝑎, 𝑏) −
∑︁
𝑏∈𝑉

𝑓 (𝑏, 𝑎)
)
=

∑︁
𝑏∈𝑉

𝑓 (𝑠, 𝑏)

Thus, |𝑓 | = 𝑓 (𝐴).

the end of lecture 10 (14 Mar)

Proof 7.2 (of Lemma 7.1). By Lemma 7.2, |𝑓 | = 𝑓 (𝐴). By the definition of 𝑓 (𝐴),

𝑓 (𝐴) ≤
∑︁

𝑎∈𝐴,𝑏∉𝐴
𝑐 (𝑎, 𝑏) −

∑︁
𝑎∈𝐴,𝑏∉𝐴

0 = 𝑐 (𝐴)

Thus, |𝑓 | ≤ 𝑐 (𝐴).

Corollary 7.1. If we find some flow 𝑓 and some cut 𝐴 such that |𝑓 | = 𝑐 (𝐴), then 𝑓 is the maximum flow and 𝐴
is the minimum cut.

Definition 7.4 (Residual network). Given a flow 𝑓 , the residual network w.r.t 𝑓 is a flow network with the
same vertex set 𝑉 , same source and sink, with edges as follows:

• Forward edge: If 𝑓 (𝑢, 𝑣) < 𝑐 (𝑢, 𝑣), then insert edge (𝑢, 𝑣) with capacity 𝑐 (𝑢, 𝑣) − 𝑓 (𝑢, 𝑣).

• Backward edge: If 𝑓 (𝑢, 𝑣) > 0, then insert (𝑣,𝑢) with capacity 𝑓 (𝑢, 𝑣).

Remark 13. If we can pick a flow through the residual network, it can be easily check that this flow plus the
existing flow in the original network is still a valid network. And such a (positive) flow augment the exisiting
flow.

Theorem 7.1 (Ford-Fulkerson Method - a family of algorithms). Repeatedly

1. Find a simple path from 𝑠 to 𝑡 in the residual network, called an augmenting path.

2. Find the minimum capacity Δ of any edge on this path.

3. Update the flow in the original network by pushing this extra flow Δ.

Until there is no augmenting path.

In case all the quantities are integral, the number of iterations is 𝑂 (𝑂𝑃𝑇).

The correctness follows from the max flow min cut theorem below. We first investigate the running time of
this algorithm:
Example 7.1 (Bad case). Consider the this network: wikipedia

If the capacities are 2100 except that the one in the middle is 1.
Then the worst case is to augment through the 1 edge every time. So it terminates after 2 · 2100 iterations,

which is exponential to the input size.

the end of lecture 11 (16 Mar)

19

https://en.wikipedia.org/wiki/File:Ford-Fulkerson_example_0.svg

7.2 Max flow min cut theorem

Theorem 7.2 (Max flow min cut). The following 3 conditions are equivalent for a flow 𝑓 in a network:

1. There is a cut whose capacity equals |𝑓 |.

2. The flow 𝑓 is optimal.

3. There is no augmenting path for flow 𝑓 .

Proof 7.3.

1 to 2 By weak duality (corollary before).

2 to 3 By contradiction. Suppose 𝑓 is optimal but there is some augmenting path, then pushing this path will
increase the flow value.

★ 3 to 1 By construction. Let 𝐴 be the set of vertices reachable from 𝑠 in the residual network. Then, by definition,
there is no edge (with positive capacity) from 𝐴 to 𝑉 − 𝐴. This means that every edge 𝑒 from 𝐴 to 𝑉 − 𝐴
has flow 𝑓 (𝑒) = 𝑐 (𝑒) and every edge from 𝑉 −𝐴 to 𝐴 has flow 0. Thus,

𝑓 (𝐴) =
∑︁

𝑎∈𝐴,𝑏∉𝐴
𝑐 (𝑎, 𝑏) −

∑︁
𝑎∈𝐴,𝑏∉𝐴

0 = 𝑐 (𝐴)

Since |𝑓 | = 𝑓 (𝐴), we get |𝑓 | = 𝑐 (𝐴).

Remark 14 (Existense of max flow, Termination).

• The max flow must exist: The objective function is bounded (e.g., the total capacity of edges leaving 𝑠) and
there is a trivial feasible solution 𝑓 (𝑒) = 0∀𝑒 ∈ 𝐸, so the optimal solution must exist.

• The theorem does not rely on the termination of the algorithm.

Remark 15. Checking 𝑓 is optimal can be done in linear time.
By (3), that is to check the existense of augmenting paths: Run a BFS from 𝑠 to 𝑡 in the residual network. If 𝑡

is reachable from 𝑠 , then the augmenting path exists.
By (2), that is to check whether the capacity of the constructed cut equals |𝑓 |.

7.3 Fattest Augmenting Path Algorithm

Theorem 7.3 (Fattest Augmenting Path Algorithm). Define the fatness of a path in a flow network to be the
minimum capacity of the edges along the path.

The algorithm: At each iteration of Ford-Fulkerson method, choose the fattest augmenting path in the residual
network.

This algorithm runs in polynomial time.

Proposition 7.1. TODO There is a 𝑂 (|𝐸 | log |𝑉 |) algorithm to find the fattest augmenting path.

Lemma 7.3 (Flow decomposition). Given a flow network (𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡, 𝑐) and a flow 𝑓 in the network. We
can decomposite a flow 𝑓 into 𝑓1, . . . , 𝑓𝑘 as follows:

1. Find a simple path 𝑝𝑖 from 𝑠 to 𝑡 in which every edge carries positive flow.

2. Let 𝑓𝑖 be the maximum flow through this path. Namely, |𝑓𝑖 | = the minimum flow on edges in 𝑝𝑖 .

3. Subtract 𝑓𝑖 from the flow 𝑓 . At least one edge (the smallest) becomes zero and is removed from the network.

20

4. Repeat this process until the flow is fully decomposited.

The decomposition satisfies |𝑓 | = ∑𝑘
𝑖 |𝑓𝑖 | and 𝑘 ≤ 𝑂 |𝐸 |.

Since 𝑓𝑖 ’s are disjoint:

Corollary 7.2. There is a path from 𝑠 to 𝑡 in which every edge has capacity ≥ 𝑂𝑃𝑇
|𝐸 | .

We always apply the lemma to the residual network: Let 𝑂𝑃𝑇𝑟𝑒𝑠 be the optimal flow value in the residual
network. Since the edges in the residual network is ≤ 2|𝐸 | (forward and backward), the lemma says we can find
a augmenting path of value ≥ 𝑂𝑃𝑇𝑟𝑒𝑠

2 |𝐸 | .

Proof 7.4 (of the algorithm). Stage 1: The goal is to achieve a total flow value of 𝑂𝑃𝑇 ∼ 𝑂𝑃𝑇
2 . Thus, before

reaching the goal, 𝑂𝑃𝑇𝑟𝑒𝑠 ∈ [𝑂𝑃𝑇
2 ,𝑂𝑃𝑇] and the fattest augmenting path has value ≥ 𝑂𝑃𝑇 /2

2 |𝐸 | = 𝑂𝑃𝑇
4 |𝐸 | . Hence, at

most 2|𝐸 | iterations are needed to reach the goal.
State 𝑖: The goal is to achieve a flow value 𝑂𝑃𝑇 ∼ 𝑂𝑃𝑇

2𝑖 . So 𝑂𝑃𝑇𝑟𝑒𝑠 ≤ 𝑂𝑃𝑇
2𝑖 , the fattest augmenting path has

value ≥ 𝑂𝑃𝑇
2𝑖+1 |𝐸 | , and the number of iterations needed is ≤ 2|𝐸 |.

Since 𝑂𝑃𝑇 is integral, the algorithm terminates in 𝑂 (log |𝑂𝑃𝑇) stages. In each stage, there are 𝑂 (|𝐸 |) itera-
tions, each costing polynomial time (|𝐸 | log |𝑉 |). So the total running time is 𝑂 (𝑝𝑜𝑙𝑦 · |𝐸 | log |𝑂𝑃𝑇 |).

the end of lecture 12 (21 Mar)

Proof 7.5 (Alternative). We have argued that the fattest augmenting path has value ≥ 𝑂𝑃𝑇𝑟𝑒𝑠
2 |𝐸 | . For simplicity,

we denote the 𝑂𝑃𝑇𝑟𝑒𝑠 in the 𝑖-th iteration by 𝑟𝑒𝑠𝑖 . Since 𝑟𝑒𝑠𝑖 equals 𝑟𝑒𝑠𝑖−1 minus the value of the augmenting
path, 𝑟𝑒𝑠𝑖 ≤ 𝑟𝑒𝑠𝑖−1

(
1 − 1

2 |𝐸 |

)
.

By induction, this implies 𝑟𝑒𝑠𝑖 ≤ 𝑂𝑃𝑇
(
1 − 1

2 |𝐸 |

)𝑖
. Setting 𝑖 = 2|𝐸 | log𝑂𝑃𝑇 , we get 𝑟𝑒𝑠𝑖 ≤ 𝑂𝑃𝑇 · 𝑒− log𝑂𝑃𝑇 = 1.

So the number of iterations is 𝑂 (|𝐸 | log |𝑂𝑃𝑇 |).

the end of lecture 13 (23 Mar)

7.4 Strongly Polynomial Time: Edmonds-Karp Algorithm

Definition 7.5 (Strongly polynomial time). An algorithm runs in strongly polynomial time if, assuming unit
time arithmetic operations (+,−, etc.), the running time is polynomial in # numerical quantities given as input.

Definition 7.6 (Weakly polynomial time). If the running time is polynomial but not in # numerical quantities
(e.g., depends on the magnitude/bits of the input), then the algorithm is weakly polynomial time.

E.g., for the network flow problem, a strongly polynomial time algorithm is polynomial in |𝐸 |, |𝑉 |, but a
weakly polynomial time algorithm can be polynomial in |𝑂𝑃𝑇 | (which depends on the input bits).

E.g., the fattest path algorithm (𝑂 (|𝐸 | log |𝑉 | · |𝐸 | log |𝑂𝑃𝑇)) is weakly polynomial time.
E.g., for LP, no strongly polynomial time algorithm is known. The ellipsoid method and interior point method

are both weakly polynomial time.

Theorem 7.4 (Edmonds-Karp Algorithm). A specific implementation of the Fold-Fulkerson method. In each
iteration, it finds an 𝑠-𝑡 path in the residual network with the fewest # edges (shortest length).

Finding a path with shortest length can be easily done using a BFS in polynomial time (𝑂 (|𝑉 | + |𝐸 |) = 𝑂 (|𝐸 |)).

Proposition 7.2. If, at a certain iteration, the shortest 𝑠-𝑡 path is of length 𝑙 , then at every subsequent iteration
the length will be ≥ 𝑙 .

Furthermore, after at most |𝐸 | iterations, the shortest length becomes ≥ 𝑙 + 1.

21

Corollary 7.3. The simple path can have length at most |𝑉 | − 1. So it immediately follows from the theorem
that the total number of iterations is 𝑂 (|𝐸 | · |𝑉 |), and so the total running time is 𝑂 (|𝑉 | · |𝐸 |2).

Proof 7.6. Consider the residual network after𝑇 iterations. Construct a BFS tree of the residual network starting
at 𝑠 . We call 𝑉0,𝑉1, . . . the vertices in the 0th, 1st layers etc. 𝑠 is in 𝑉0 and 𝑡 is in 𝑉𝑙 .

Note that a BFS tree has no downward edges that across more than 1 layers (no (𝑢, 𝑣) on the tree such that
𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉𝑗 , 𝑗 − 𝑖 > 1).

Suppose we pick a length-𝑘 path 𝑝 from 𝑠 to 𝑡 in the (𝑇 + 1)-th iteration and push 𝑝 to the flow in the original
graph. At least one edges in 𝑝 has been saturated and disappears in the BFS tree, while the opposite edges of
every edge in 𝑝 appears in the BFS tree.

Since this only adds edges from higher-numbered layer to lower-numbered ones, and every step on a path
can advance at most by one layer, the shortest path from 𝑠 to 𝑡 is at least 𝑙 .

Furthermore, if all edges in length-𝑙 paths in the original BFS have been saturated and reversed, the shortest
length becomes ≥ 𝑙 + 1. Since each time we reverse at least one edge, this process takes at most |𝐸 | iterations.

7.5 Bipartite Graphs

Theorem 7.5 (Hall’s theorem). A bipartite graph 𝐺 = (𝑉 , 𝐸) with bipartition (𝐿, 𝑅) such that |𝐿 | = |𝑅 | has a
perfect matching if and only if for every 𝐴 ⊆ 𝐿 we have |𝐴| ≤ |𝑁 (𝐴).

TODO

Theorem 7.6 (Konig’s theorem). 𝐶 = (𝐿 − 𝑆) ∪ (𝑅 ∩ 𝑆) is a vertex cover.

22

8 Appendix

Proposition 8.1. (
1 − 1

𝑥

)𝑥
≤ 1
𝑒
, ∀𝑥 ≥ 1

Proof 8.1. By 1 + 𝑥 ≤ 𝑒𝑥 for 𝑥 ∈ R, we have 1 − 1
𝑥
≤ 𝑒−1/𝑥 . Since 𝑡𝑥 is an increasing function of 𝑡 on [0, +∞) for

𝑥 ≥ 1, we take both sides to the power of 𝑥 and get the result.

23

	Introduction
	What is combinatorial optimization
	P and NP

	Steiner Tree Problem
	Metric Steiner Tree Problem
	General Steiner Tree Problem

	Metric Traveling Salesman Problem
	2-approximate Algorithm
	 3/2-approximate Algorithm

	Linear Programming
	Matrix Representation
	LP Duality

	Minimum Weighted Vertex Cover
	The dual of the LP relaxation
	Unweighted

	Set Cover Problem
	A LP Relaxation and A Randomized Approximation
	 The Dual of the Relaxation and A Greedy Algorithm

	Network flow
	Definition
	Max flow min cut theorem
	Fattest Augmenting Path Algorithm
	Strongly Polynomial Time: Edmonds-Karp Algorithm
	Bipartite Graphs

	Appendix

